This is the published version:

Available from Deakin Research Online: http://hdl.handle.net/10536/DRO/DU:30005248

Every reasonable effort has been made to ensure that permission has been obtained for items included in DRO. If you believe that your rights have been infringed by this repository, please contact drosupport@deakin.edu.au

Copyright : 2003, CIRAS
The Rough Sets Feature Selection for Trees Recognition in Color Aerial Images Using Genetic Algorithms

Li Pan\(^1\), Saeid Nahavandi\(^1\), and Hong Zheng\(^1\)

\(^1\)School of Engineering and Technology, Deakin University

Geelong VIC3217, Australia

\(^2\)School of Remote Sensing and Information & Engineering, Wuhan University

129 Luoyu Road, Wuhan 430079, P.R.China

panli@deakin.edu.au

Abstract

Selecting a set of features which is optimal for a given task is the problem which plays an important role in a wide variety of contexts including pattern recognition, images understanding and machine learning. The concept of reduction of the decision table based on the rough set is very useful for feature selection. In this paper, a genetic algorithm based approach is presented to search the relative reduce decision table of the rough set. This approach has the ability to accommodate multiple criteria such as accuracy and cost of classification into the feature selection process and finds the effective feature subset for texture classification. On the basis of the effective feature subset selected, this paper presents a method to extract the objects which are higher than their surroundings, such as trees or forest, in the color aerial images. The experiments results show that the feature subset selected and the method of the object extraction presented in this paper are practical and effective.

1. Introduction

The rough set that was presented by Z.Pawlak in 1982 is a new mathematical approach to imprecision, vagueness and uncertainty\(^[1]\). The concept of reduction of the decision table based on the rough sets is very useful for feature selection. Because the decision table includes the condition attributes or features and the decision attributes or categories, the procedure of feature selection based the decision table is distinct and effective. The approaches of feature selection and classification using the rough set were studied in some papers \(^[2,3,4,5]\). In their approaches, there are two problems: (1) Because the problem reducing the decision tables on rough sets is a difficult optimization problem, it is difficult for above methods to find out the global optimal solution or the effective feature subset. (2) The feature values or condition attributes were discretized firstly in above approaches, because continuous data or numeric attributes were proven to be rather unsuitable for the reduction of attributes using the rough sets. In fact, regardless of how effective are the methods of discretization, there is the difference or inconsistence between original data and discrete data. Besides, our application is in the domain of aerial images. It is difficult that symbol rulers are used in the texture classification in the aerial images. Focusing on the two problems, this paper uses two different form the decision tables, namely the decision tables based on continuous and discrete attributes and adopts genetic algorithm to find out the effective feature subset or the optimal reduce decision table of the rough sets. After the effective feature subset selected, we present the algorithm to extract the objects which are higher than their surroundings in color aerial images. The effective feature subset is used in the texture classification of high objects. The technique presented in this paper is illustrated by its application to the problem of trees extraction from aerial images.

This paper is organized as follows: Section 2 explains the method of feature selection based on the rough sets. Section 3 describes the procedure of reduct algorithm using genetic algorithm. Section 4 presents the method of texture classification. In Section 5, experimental results are discussed and the conclusion is given in Section 6.

2. Feature Selection Based on the Rough Sets

The feature selection is an important step in design of classification. Let us assume an image with size m×n is given (containing X categories), constituted with p feature patterns y (classes). Let all p features of pattern generate a whole original feature set \(T_{\text{all}} = \{t_1,t_2,...,t_p\}\). An optimal feature selection is a process of searching for a subset \(T_{\text{sub}} = \{t_1,t_2,...,t_q\}\) \((T_{\text{sub}} \subseteq T_{\text{all}}, q < p)\) under given a type of criterion, which guarantee better result of classification. Generally a image usually consists of many different classes. For example an image can be classified according to color, size, etc. Hence let assume that there is a family of indiscernibility relation \(I = \{t_1,t_2,...,t_p\}\) over the universe \(U\), which is equal as a whole original feature set \(T_{\text{all}} = \{t_1,t_2,...,t_p\}\). In rough set, if minimal subset \(I'\) of I can determine knowledge about the universe, \(\cap I = \cap I'\) will be called...
a reduction of I, where \(\cap' \) is equal as a subset feature
\(T_{sub} = \{ t_1, t_2, \ldots, t_p \} \). Hence, the process of features
selection is that minimal subset attribute is fined. In
this paper, we firstly define the decision table of the
rough sets. The following content induce mainly the
concept about the decision table and reduction.

The rough sets theory deals with information
represented by a table called an information system or
decision table. This table consists of objects and attributes. The entries in the table are the categorical
values of the features and possible categories.

The decision table of feature selection can be
designed as
\[
DT = \langle U, C \cup D, f, \rangle \tag{2-1}
\]
where \(U \) is a finite set of \(N \) objects \(\{ x_1, x_2, \ldots, x_N \} \), \(Q \)
is a finite set of attributes, \(C \) is a set of condition
attributes or feature attributes, \(D \) is a set of decision
attributes or categories attributes, \(v = \cup_{q \in C \cup D} V_q \), where \(V_q \) is a domain (value) of the
attribute \(q \in C \cup D \), and \(f : U \times (C \cup D) \rightarrow P \) is a
total decision function (information function, decision rule
in DT) such that \(f(x, q) \in V_q \) for every \(q \in C \cup D \).

For a given decision table \(DT \), a given subset of
attributes \(A \subseteq Q \) determines the approximation space
\(AS = (U, IND(A)) \) in \(DT \). For a given \(A \subseteq Q \) and
\(A \subseteq U \), the \(A \)-lower approximation \(A^X \) of set \(X \) in \(AS \)
and \(A \)-upper approximation \(\overline{A}X \) of set \(X \) in \(AS \) are
defined as follows:
\[
\begin{align*}
A^X &= \{ x \in U : [x] \subseteq A \} = \bigcup \{ Y \subseteq A : Y \subseteq X \} \tag{2-2} \\
\overline{A}X &= \{ x \in U : [x] \cap X \neq \emptyset \} = \bigcup \{ Y \subseteq A : Y \cap X \neq \emptyset \} \tag{2-3}
\end{align*}
\]
where \(A \) denotes the set of all equivalence classes of
\(IND(A) \). The process of finding a smaller set of
attributes than original one with same classificatory
power as original set is called attribute reduction. A
reduction is the essential part of an information system
which can discern all objects discernible by the
original information system. A core is a common part
of all reduces. Given an decision table \(DT \) condition
and decision attributes \(C \subseteq C \cup D \), for a given set of
condition attributes \(Ace \) we can
define a positive
region \(POSS(A) \) in the relation \(IND(D) \)as
\[
POSS(A) = \{ \alpha \in A \subseteq IND(D) \} \tag{2-4}
\]
The positive region \(POSS(A) \) contains all objects in \(U \)
which can be classified without error into distinct
classes defined by \(IND(D) \) based only on information
in the relation \(IND(A) \).

For a decision table \(DT \) and a subset of attributes
\(A \subseteq C \), an attribute \(a \in A \) is called dispensable in the

\begin{tabular}{|c|c|c|c|c|}
\hline
NO & CON1 & CON2 & \ldots & CONp & DES \\
\hline
SAM1 & Value11 & Value12 & \ldots & Value1p & Class1 \\
SAM2 & Value21 & Value22 & \ldots & Value2p & Class2 \\
SAM3 & Value31 & Value32 & \ldots & Value3p & Class3 \\
SAM4 & Value41 & Value42 & \ldots & Value4p & Class4 \\
SAM5 & Value51 & Value52 & \ldots & Value5p & Class5 \\
\hline
\end{tabular}

(a)

\begin{tabular}{|c|c|c|c|c|}
\hline
NO & 1 & 0 & \ldots & 0 & DES \\
\hline
SAM1 & Value11 & Value12 & \ldots & Value1p & Class1 \\
SAM2 & Value21 & Value22 & \ldots & Value2p & Class2 \\
SAM3 & Value31 & Value32 & \ldots & Value3p & Class3 \\
SAM4 & Value41 & Value42 & \ldots & Value4p & Class4 \\
SAM5 & Value51 & Value52 & \ldots & Value5p & Class5 \\
\hline
\end{tabular}

(b)

\begin{tabular}{|c|c|c|c|}
\hline
NO & CON1 & \ldots & CONp & DES \\
\hline
SAM1 & Value11 & \ldots & Value1p & Class1 \\
SAM2 & Value21 & \ldots & Value2p & Class2 \\
SAM3 & Value31 & \ldots & Value3p & Class3 \\
SAM4 & Value41 & \ldots & Value4p & Class4 \\
SAM5 & Value51 & \ldots & Value5p & Class5 \\
\hline
\end{tabular}

(c)

Figure 1. An example of relative reduction of the decision table. (a) original decision table. (b) the middle
result. (0 and 1 denotes the irrelevant and relevant features respectively) (c) a relative reduction of the
decision table.
The fitness function is used to evaluate the goodness of a chromosome (solution). In this study, the fitness value of each feature is set to the number of the correct rate(i). The fitness function has to combine two different criteria – the accuracy of the classification function realized by the Fuzzy C-Mean method and the cost of performing classification. The accuracy of the classification function can be estimated by calculating the correct rate of each reduct decision table using the Fuzzy C-Mean method. The measures of the cost of classification suggest the number of condition attributes in the decision table needed for classification. Here, we choose a relatively simple form of a 2-criteria fitness function defined as follows:

\[\text{Fitness}(i) = \frac{\text{correct}_\text{rate}(i)}{1 + \text{num}(i)} \]

Where Fitness(i) is the fitness of the feature subset represented by individual i, correct_rate(i) is the test accuracy of the fuzzy c-mean classifier using the feature subset represented by i, and num(i) is the number of condition attributes or features of subset represented by individual i. In addition, the parameter \(\lambda \) is the weight of the number of features and discussed in detail in the experiment. Obviously, the greater the value of fitness, the better the performance of the selected feature subset. The following contents describe that the effective feature subset is used in texture classification.

4. Texture Classification Based the Feature Subset Selected

We have applied feature selection for the purpose of texture classification in color aerial images. In this paper, trees or forests are interested objects. Trees or forests are a kind of natural scenes which are not structured and cannot be represented easily by regular rules. Texture and color features are important cues for trees extraction in color aerial images. In practice, if only texture and color features are used, the results of trees extraction are inaccurate. Our method combines texture features, color and height information to overcome these disadvantages. A technique similar to ours was discussed in [8], which dealt with realistic and thus more complex scenes. But it needed high resolution aerial images and DTM. In this paper, low resolution aerial images and digital elevation model (DEM) are used in trees extraction. At first, according to the DEMs, the original color aerial images are segmented into the high and low objects. High objects include trees or forest, houses, bridges and so on. In order to refine trees or forest, the high objects are classified by Fuzzy C-Mean method based on the effective feature subset. The procedure is described as follows.

We start with DEM data and automatically generated by the digital photogrammetry system --Virtuozo. The resolution of the images by which DEM data are...
obtained may be lower than original images. According to following algorithm, high and low objects are obtained.

Step 1. DEM are mapped to range (0—255 gray level) in order to form the image of DEM. As a result, different gray levels denote different elevation.

Step 2. With the DEM image, original image is divided into many regions with same size.

Step 3. The edges in the DEM image are extracted by Sobel algorithm. These edges reflect the local changes of elevations of objects. According to the edge image, we compute the segment threshold for each region.

Step 4. According to the threshold of region, the original image is segmented into a binary image, in which 1 represents high objects and 0 represents low objects. The high objects include trees, houses, bridges and so on.

The next step is to refine trees from high objects by Fuzzy C-Mean clustering based the effective feature subset selected. Fuzzy C-Mean clustering algorithm (FCM) was introduced by J. C. Bezdek [9]. In this paper, FCM is used in three different processing procedures:
- The continuous data are discretized by FCM.
- The samples are classified by FCM in the reduction of decision table.
- Trees are extracted by FCM in the high objects.

In above three procedures, the classified objects are different. But basic algorithm is the same. The principle of Fuzzy C-Mean will be discussed in detail in [9].

5. Experimental Results

In our experiment, 12 color aerial images are used. The photography scale of color aerial images is 1:8000. The principle focal is 152.987mm. The scanning resolution is 96 \(\times \) 11m. The photo size is 23cm \(\times \) 23cm. A total of 200 samples are selected, which include density trees, sparse trees, houses, roads, grass, river and ground. At first, the color aerial images samples in the RGB space are converted into in the HIS (hue, saturation, and intensity) space. In the intensity of the color aerial images samples, a total of 11 texture features per pattern (pixel)[10] are computed in our experiments. In addition, five color features are

![Figure 2](image)

Figure 2. (A) and (B) are original color aerial images; (a) and (b) are the results of classification, where white area denote trees and black area non-trees.
of aerial images. The values of texture features are continuous data. The symbol rules are not effective in useful as discrete data.

algorithms show that continuous attributes are same as the discrete attributes. In this paper, the decision tables based on the continuous attributes of the decision table are discretized firstly. In the second algorithm, the continuous data are discretized firstly by Fuzzy c-means, where the classifying number of each feature is the two. On the basis of the decision table based on the discrete data, the effective feature subset is searched by the genetic algorithm. The results of two methods are listed in Table 1. There are different four weights: $\lambda=0.1,0.05,0.01,0.005$ and different correct rates are obtained. Because the correct rates are more important than the classifying cost, the parameter λ is 0.01 in this paper. The comparison results show that the continuous attributes are the same effective as the discrete attributes.

In addition, the parameters used in the genetic algorithm are listed as follows:
- Population size: 50;
- Number of generation: 500;
- Probability of crossover: 0.9;
- Probability of mutation: 0.5;

<table>
<thead>
<tr>
<th>Data</th>
<th>Parameter λ</th>
<th>Feature selected</th>
<th>Correct rate</th>
</tr>
</thead>
<tbody>
<tr>
<td>Continuous attributes</td>
<td>0.005</td>
<td>7</td>
<td>97.2%</td>
</tr>
<tr>
<td></td>
<td>0.01</td>
<td>6</td>
<td>98.3%</td>
</tr>
<tr>
<td></td>
<td>0.05</td>
<td>5</td>
<td>92.3%</td>
</tr>
<tr>
<td></td>
<td>0.1</td>
<td>4</td>
<td>88.3%</td>
</tr>
<tr>
<td>Discrete attributes</td>
<td>0.005</td>
<td>7</td>
<td>96.1%</td>
</tr>
<tr>
<td></td>
<td>0.01</td>
<td>6</td>
<td>97.2%</td>
</tr>
<tr>
<td></td>
<td>0.05</td>
<td>5</td>
<td>93.4%</td>
</tr>
<tr>
<td></td>
<td>0.1</td>
<td>4</td>
<td>88.3%</td>
</tr>
</tbody>
</table>

used, which include hue, saturation, I, I$_1$, and I$_2$.

The original data is represented by the 200×17 decision table based on continuous attributes, where 200 is the number of training samples and 16 condition attributes or features are selected. Besides, there is one decision attribute or class information in the table. We use two different algorithms to find out the effective feature subset. The first algorithm uses directly the decision table based on the continuous data. All the values of features are normalized to the range from 0 to 1. In the second algorithm, the continuous data are discretized firstly by Fuzzy c-means, where the classifying number of each feature is the two. On the basis of the decision table based on the discrete data, the effective feature subset is searched by the genetic algorithm. The results of two methods are listed in Table 1. There are different four weights: $\lambda=0.1,0.05,0.01,0.005$ and different correct rates are obtained. Because the correct rates are more important than the classifying cost, the parameter λ is 0.01 in this paper. The comparison results show that the continuous attributes are the same effective as the discrete attributes.

In addition, the parameters used in the genetic algorithm are listed as follows:
- Population size: 50;
- Number of generation: 500;
- Probability of crossover: 0.9;
- Probability of mutation: 0.5;

6. Conclusions

This paper describes an approach to find out the effective feature subset based on the decision table of the rough set using genetic algorithm. Generally, before the decision tables are reduced, the continuous attributes of the decision table are discretized firstly. In this paper, the decision tables based on the continuous data and discrete attributes are reduced using genetic algorithm. The results of comparison between the two algorithms show that continuous attributes are same useful as discrete data. Our application is in the domain of aerial images. The values of texture features are continuous data. The symbol rules are not effective in the classification of aerial images. Besides, on the basic of the effective feature subset selected, this paper presents an approach to extract the objects which are higher than their surroundings, such as trees or forests. The experiment results show that the feature subset selected and the method of classification are effective and practical.

In practice, due to remote sensing images have more information than the aerial images, trees or forest are extracted in remote sensing images. Although we have dealt with color aerial images, the technique is extensible to multispectral images. But, the geometric resolution of remote sensing images is lower than aerial images, the rate of trees recognition will decrease. In addition, it is difficult for remote sensing images to obtain quickly the height information. Hence, the algorithm of extracting trees should be improved further.

References