
Available from Deakin Research Online:

http://hdl.handle.net/10536/DRO/DU:30009668

Every reasonable effort has been made to ensure that permission has been obtained for items included in Deakin Research Online. If you believe that your rights have been infringed by this repository, please contact drosupport@deakin.edu.au

Copyright : 2005, Academy of Marketing Science
A CONSTRUCT OF SEQUENTIAL SERVICE QUALITY IN SERVICE ENCOUNTER CHAINS

Göran Svensson, Växjö University, Sweden
Michael Callaghan, Deakin University, Australia

ABSTRACT

Studies of the construct of service quality have traditionally been undertaken from the perspective of the service receiver. More recently, research has focused on both the service provider’s perspective and the service receiver’s perspective. In addition, there have also been some triadic network approaches to the study of service quality. However, there has been very little research into sequential service quality in service-encounter chains (that is, consecutive service performances in a series of service encounters). The incorporation of connected service encounters in services management can improve understanding of sequential service quality in service-encounter chains. This paper provides a customized construct of sequential service quality and highlights the importance of time, context, and performance threshold in service-encounter chains. Furthermore, the paper presents a customized six-dimensional construct of sequential service quality.

INTRODUCTION

More than two decades ago, Surprenant, Solomon and Gutman (1983) stated that service encounters are human interactions. Service quality in all service encounters is thus intrinsically affected by the perspectives of both the service provider and the service receiver. In a similar vein, Czepiel (1990) concluded that research on service quality must always include the perspectives of both the provider and the receiver. However, most research on the service-quality construct has been restricted to one perspective—that of the service receiver (Parasuraman, Zeithaml and Berry, 1988; Dabholkar, Thorpe and Rentz, 1996; Bienstock, Mentzer and Bird, 1997). A few have applied dual perspectives and considered interactive features of service quality in service encounters (Dedeke, 2003; Svensson, 2001, 2003; Chow-Chua and Komaran, 2002; Tam and Wong, 2001; Athanassopoulos, 1997). But, in general, little research in services management has gone beyond the single perspective or the interactive perspective. At best, triadic network approaches have been explored (Svensson, 2002). The objective is to conceptualize and describe a customized construct of sequential service quality in service-encounter chains.

CONCEPTUAL FRAMEWORK

The construct of service quality is multidimensional. Several models have taken this into account and have conceptualized the construct of service quality in multidimensional terms (Bienstock, Mentzer and Bird, 1997; Dabholkar, Thorpe and Rentz, 1996; Edvardsson, 1996; Lehtinen and Lehtinen, 1991; Brown and Swartz, 1989; Parasuraman, Zeithaml and Berry, 1988; Garvin, 1987, 1988; Gummesson, 1987; Albrecht and Zemke, 1985; Grönroos, 1983, 1984, 1988, 1990). Subsequently, various researchers have explored the construct of service quality in different empirical settings, and have developed various multiple-item measures of the construct. In general, these have been derived from the service receivers’ perspective, but not from that of the service providers. In particular, they have neglected the service receivers’ service receiver and the service providers’ service provider. Such multidimensionality might vary among various service encounters over time and across contexts—as might the performance thresholds.

Service quality in service encounters is frequently depicted as being the performance of an interactive process between the service provider and the service receiver. However, in research, the service provider’s perspective in the service encounter is seldom acknowledged, and often neglected. The reality is that both perspectives should be considered, and both require further research (Svensson, 2001, 2002, 2003; Lindqvist and Persson, 1997; Strandvik and Storbacka, 1996; Czepiel, 1990; Surprenant, Solomon and Gutman, 1983). Nevertheless, some research efforts have considered both (Dedeke, 2003; Svensson, 2001, 2003; Chow-Chua and Komaran, 2002; Tam and Wong, 2001; Athanassopoulos, 1997). The interactivity between the two perspectives leads to a dynamic approach. The interactive features of service quality in service encounters are thus crucial to the ultimate performance, even though the interactive features in other service encounters might also be important. In fact, the service-quality performance might be derived from...
the outcome of a series of interactive processes in consecutive service encounters. The ultimate outcome depends upon the performance thresholds in any given instance. The performance thresholds influence and deteriorate the ultimate outcome of service quality in service encounters and service encounter chains.

The performance of service quality in service encounters can also be dependent upon, or at least influenced by, others in a network context. Third parties in service encounters can influence the performance of service quality. The network can also be intra-organizational—rather than inter-organizational. However, network approaches to service quality in service encounters are rare in research (Svensson, 2002). Furthermore, the performance of service quality in service encounters can also be dependent upon, or influenced by, other service encounters in a chain or channel context. This means that the interactive features of service-quality performance in consecutive service encounters influence the ultimate performance of sequential service quality in service-encounter chains.

THEORETICAL IMPLICATIONS

As noted above, the various extant constructs of service quality can be modified and combined to make a customized construct for exploring and describing sequential service quality in service-encounter chains. Of the models noted above, only a few have been tested for validity and reliability. These include Parasuraman, Zeithaml and Berry (1988), Dabholkar, Thorpe and Rentz (1996), and Bienstock, Mentzer and Bird (1997). These models are therefore used in the present study to construct a customized conceptual framework of sequential service quality. Parasuraman, Zeithaml and Berry (1988) identified five dimensions of service quality in constructing their SERVQUAL model to measure the consumer’s judgment of a company’s service offerings. These dimensions were tangibility, reliability, responsiveness, assurance, and empathy. Dabholkar, Thorpe and Rentz (1996) also identified five dimensions in their SQRS model of retail service quality in assessing levels of service quality and detecting changes required in the services provided. Their five dimensions—physical aspects, reliability, personal interaction, problem solving, and policy—were somewhat different from those of Parasuraman, Zeithaml and Berry (1988). Bienstock, Mentzer and Bird (1997) identified three dimensions in their PDSQ model to measure industrial customer perceptions of the physical distribution of service quality received from suppliers. Their dimensions were timeliness, availability, and condition. Although they have been validated and been shown to be reliable, none of these three models is entirely appropriate in itself for exploring sequential service quality in service encounter chains—because they have been shown to be highly context-specific (Buttle, 1996; Asubonteng, McCleary and Swan, 1996). Indeed, SQRS and PDSQ were developed, at least in part, as a result of the lack of universal applicability of SERVQUAL. Nevertheless, as previously noted, a customized construct of sequential service quality can be developed on the basis of these validated and reliability-tested constructs.

Issues of physical facilities and their appearances are addressed by most items of the tangibility dimension of SERVQUAL and by the physical aspects dimension of SQRS. These two dimensions are therefore condensed into one dimension representing the visuals of perceived sequential service quality in service-encounter chains. Issues of accuracy and promise are addressed by most items of the reliability dimension of SERVQUAL, by aspects of the reliability dimension of SQRS, and by the condition dimension of PDSQ. These three dimensions are therefore condensed into one dimension reflecting the reliability of perceived sequential service quality in service-encounter chains. Issues of attention, promptness, and willingness to respond are addressed by most items of the responsiveness dimension of SERVQUAL, by most of the problem-solving dimension SQRS (and by some aspects of its personal interaction dimension), and by the timeliness dimension of PDSQ. These four dimensions are therefore condensed into one dimension reflecting the reaction of perceived sequential service quality in service-encounter chains. Issues of trust and kindness are addressed by most items of the assurance dimension of SERVQUAL and by the personal-interaction dimension of SQRS. The dimensions of assurance and personal interaction are therefore condensed into one dimension representing confidence of perceived sequential service quality in service-encounter chains. Issues of convenience and obtainability are addressed by most items of the policy dimension of SQRS and by the availability dimension of PDSQ. These two dimensions of policy and availability are therefore condensed into one dimension representing accessibility of perceived sequential service quality in service-encounter chains. Issues of understanding and insight are addressed by most items
of the empathy dimension of SERVQUAL and by aspects of the personal-interaction dimension of SQRS. These two dimensions are therefore condensed into one dimension representing comprehension of perceived sequential service quality in service-encounter chains. As a result of these changes, a six-dimensional customized construct of sequential service quality in service-encounter chains has been developed in the present study. These six dimensions are: (i) visuals; (ii) reliability; (iii) reaction; (iv) confidence; (v) accessibility; and (vi) comprehension (see Table 1). The dimensions can be applied in service chains from either an upstream-downstream perspective or a downstream-upstream perspective.

MANAGERIAL IMPLICATIONS

A service encounter consists of the interactive process between a service provider and a service receiver. The service-encounter chain consists of the interactive processes between service providers and service receivers in and between consecutive service encounters. Two generic parameters influence the ultimate performance of sequential service quality in service-encounter chains. One of these parameters is context, which refers to the actual service encounter; the other is time, which connects the actual service performance in each of these service encounters. Together, these two generic parameters construct a generic conceptual framework that contributes to an understanding of the complexity of service-quality performance in a series of consecutive service encounters.

The performance of service quality in one service encounter is relatively easy to describe because it is dependent upon the interactive processes of production, delivery, and consumption between one service provider and one service receiver. In contrast, sequential service quality is relatively complex to describe because it involves production, delivery, and consumption among various service providers and service receivers in a series of consecutive service encounters. The challenge in exploring the construct of sequential service quality is the multiple interactivity of service-encounter chains. This means that the performance of service quality in one focal service encounter can affect, or be affected by, the performances in other service encounters. For example, the performance of a service encounter between company A’s salesman, and company B’s purchasing manager might be affected by the service encounter between company A’s purchasing manager and the sales manager of an upstream company (Company C) or the purchasing manager of a downstream company (Company D). There can also be interdependence of the service quality in an internal service-encounter chain—consisting of a purchasing department, a production department, and a sales department. For example, the sales department might perceive the performance of the production department as being poor, but this might be a result of the purchasing department not procuring the necessary materials and components. The purchasing department might perceive the performance of the sales department as deficient because the production department blames the sales department for its inaccurate sales prognoses having caused unreliable orders to the purchasing department. The production department might judge the service quality of the purchasing department to be troublesome because the procurement of materials and components is unreliable, which causes delayed deliveries to customers. In summary, the performance of service quality in service encounters can be affected by the performance of other service encounters in the sequence. The question of performance thresholds thus arises as another parameter of importance in sequential service quality in service-encounter chains.

In addition to ‘time’ and ‘context’, a third generic parameter of importance in sequential service quality is the ‘performance threshold’ in service-encounter chains. Performance threshold decreases as the sequential service quality in service-encounter chains improves, and increases as the sequential service quality in service-encounter chains deteriorates. Taken together, the performance threshold has a significant influence on the ultimate outcome of sequential service quality in service-encounter chains.

When the overall performance in service-encounter chains is good, the sequential service quality is high. This means that the direct and indirect performance thresholds are low throughout the focal unit of analysis (that is, the service-encounter chain). This also means that the service-quality performance in each consecutive service encounter contributes positively to the ultimate sequential service quality. In contrast, poor performances in service-encounter chains lead to poor sequential service quality. This means that the direct or indirect performance thresholds (or both) are high. For example, poor reliability (such as delays
and inconsistencies in performances) in one service encounter can affect reliability in other dependent encounters. This might be caused by a lack of empathy in personal interaction between service providers and service receivers in various service encounters. In contrast, if the sequential service quality is high in service-encounter chains, the high reliability in one service encounter is likely to enhance reliability in other dependent encounters. Empathy in personal interaction between service providers and service receivers in direct and indirect service encounters provides a basis for performances of high standard. Existing constructs of service quality are inadequate for exploring and describing sequential service quality in service-encounter chains because these models have been developed for other purposes.

CONCLUSIONS AND SUGGESTIONS FOR THE FUTURE

Research into sequential service quality in service-encounter chains is useful in a number of areas that go beyond current service-quality constructs. In particular, the multiple interactions of sequential service quality (taking into account the perspectives of both providers and receivers) should be stressed in services management. The extant constructs of service quality, and their applications in practice, do not take adequate account of the interrelationships and interdependences of service performances in a series of consecutive service encounters. These matters have received consideration in business logistics, but the dimensional frameworks of these constructs are different (for example, lead time and service level). A consideration of sequential service quality is therefore of theoretical and managerial importance in services management. Because the models proposed here considers both single and interactive perspectives of service quality, the perspectives of both service providers and service receivers are explored and evaluated in (and between) different service encounters. A related issue of importance in services management is how the ultimate service performance is affected by deficiencies in single and interactive performances of sequential service quality. The effect of performance thresholds over time and across contexts should not be ignored by practitioners in dealing with the interactive features of service-quality performances in service-encounter chains.

REFERENCES

