Review: several interventions prevent ventilator associated pneumonia in critically ill patients

Tracey Bucknall

Evid. Based Nurs. 2003;6;112
doi:10.1136/ebn.6.4.112

Updated information and services can be found at:
http://ebn.bmj.com/cgi/content/full/6/4/112

These include:

References
This article cites 3 articles, 2 of which can be accessed free at:
http://ebn.bmj.com/cgi/content/full/6/4/112#BIBL

1 online articles that cite this article can be accessed at:
http://ebn.bmj.com/cgi/content/full/6/4/112#otherarticles

Rapid responses
You can respond to this article at:
http://ebn.bmj.com/cgi/eleletter-submit/6/4/112

Email alerting service
Receive free email alerts when new articles cite this article - sign up in the box at the top right corner of the article

Topic collections
Articles on similar topics can be found in the following collections

- Drugs: infectious diseases (1980 articles)
- Pneumonia (infectious disease) (460 articles)
- TB and other respiratory infections (1093 articles)
- Adult intensive care (1185 articles)
- Pneumonia (respiratory medicine) (891 articles)
- Clinical diagnostic tests (8984 articles)
- Internet (1418 articles)

Notes

To order reprints of this article go to:
http://journals.bmj.com/cgi/reprintform

To subscribe to Evidence-Based Nursing go to:
http://journals.bmj.com/subscriptions/
Review: several interventions prevent ventilator associated pneumonia in critically ill patients

QUESTION: Which interventions prevent ventilator associated pneumonia (VAP) in critically ill patients?

Main results
34 studies met the selection criteria. Meta-analysis was not done because of study variations in the diagnostic criteria for pneumonia. Results are summarised in the table.

Conclusions
Semirecumbent positioning, stress ulcer prophylaxis (sucralfate rather than H2 antagonists), aspiration of subglottic secretions, selective digestive tract decontamination, and oscillating beds reduce ventilator associated pneumonia (VAP) in select critically ill patients. No evidence currently supports specific methods of enteral feeding or increased frequency of ventilator circuitry changes for prevention of VAP.

Effectiveness of interventions for preventing ventilator associated pneumonia (VAP) in critically ill patients

<table>
<thead>
<tr>
<th>Intervention</th>
<th>Results</th>
</tr>
</thead>
<tbody>
<tr>
<td>Semirecumbent vs supine positioning†</td>
<td>↓ VAP (1 RCT, n=86); ↓ gastroesophageal reflux and aspiration events (2 controlled clinical trials, n=30); no difference in mortality (1 RCT, n=86)</td>
</tr>
<tr>
<td>Stress ulcer prophylaxis: sucralfate vs H2 antagonists (7 MAs of >20 RCTs; 1 recent RCT, n=1200)</td>
<td>↓ VAP (4 of 7 MAs); 3 MAs found no difference; ↓ mortality (3 of 4 MAs); equivocal evidence regarding increased gastrointestinal bleeding (2 MAs); 1 recent RCT (n=1200) found increased bleeding</td>
</tr>
<tr>
<td>Aspiration of subglottic secretions vs none†</td>
<td>no difference in VAP (2 RCTs, n=496); reduced VAP (1 RCT, n=145), delayed time to VAP development (3 RCTs, n=641); no difference in mortality (3 RCTs, n=641)</td>
</tr>
<tr>
<td>Oscillating vs standard non-oscillating bed† (1 MA of 6 RCTs; 1 recent RCT, n=103)</td>
<td>↓ pneumonia (1 MA), no difference (1 RCT, n=103); no difference in mortality (1 MA, 1 RCT, n=103)</td>
</tr>
<tr>
<td>Selective + systemic antibiotics vs none† (7 MAs of >40 RCTs)</td>
<td>↓ VAP (7 MAs); ↓ mortality (4 of 7 MAs)</td>
</tr>
<tr>
<td>Topical + systemic antibiotics alone vs none†</td>
<td>↓ VAP (3 of 3 MAs); ↓ mortality (4 of 4 MAs)</td>
</tr>
<tr>
<td>Ventilator circuit management (4 RCTs, n=NA)</td>
<td>no difference in mortality (4 of 4 MAs)</td>
</tr>
<tr>
<td>Fewer v more changes (4 RCTs)</td>
<td>no difference in VAP (4 RCTs)</td>
</tr>
<tr>
<td>Fewer v more changes in heat and moisture exchangers (1 RCT)</td>
<td>no difference in VAP (1 RCT)</td>
</tr>
<tr>
<td>Heat and moisture exchanger v humidifier (1 MA of 5 RCTs)</td>
<td>no difference in VAP (4 of 5 RCTs in 1 MA); no difference in mortality (4 of 4 RCTs in 1 MA)</td>
</tr>
<tr>
<td>Enteral feeding methods (4 RCTs, n=504)</td>
<td>no difference in mortality (1 RCT, n=44)</td>
</tr>
<tr>
<td>Small intestinal v gastric feeding</td>
<td>no difference in VAP or mortality (1 RCT, n=305)</td>
</tr>
<tr>
<td>Metoclopramide v none†</td>
<td>no difference in VAP or mortality (1 RCT, n=305)</td>
</tr>
<tr>
<td>Acidified v normal feedings†</td>
<td>no difference in VAP or mortality (1 RCT, n=95)</td>
</tr>
<tr>
<td>Intermittent v continuous feeding</td>
<td>no difference in VAP or mortality (1 RCT, n=60)</td>
</tr>
</tbody>
</table>

*RCT = randomised controlled trial, MA = meta-analysis, NA = not available.
†Information on comparison group provided by author.

COMMENTARY
VAP is a common condition among critically ill patients and a burden to healthcare systems. Although the incidence of VAP is difficult to determine because of diagnostic variability, research shows a 20–30% mortality rate, longer ICU and hospital stays, and higher hospital costs for patients with VAP.

The systematic review by Collard et al provides a thorough analysis of the evidence to date, highlighting the considerable gaps in our knowledge. In selecting studies for inclusion, the authors noted the lack of standardised diagnostic criteria, which prevented pooling of individual study results in a meta-analysis. Diagnostic criteria for VAP may include fever, leucocytosis, purulent secretions, and changes on chest radiography and microbiology. Limitations of existing studies included small sample sizes, lack of power, and equivocal and conflicting findings.

Although semirecumbent positioning of all eligible patients appears easy, inexpensive, and relatively uncontroversial, evidence on practices such as oscillating beds and selective digestive decontamination is equivocal. Collard et al correctly attributed these conflicting findings to differences in inclusion criteria, outcome measures, and analyses used in individual studies. They also caution practitioners about the use of selective digestive tract decontamination because of uncertainties about effects of such treatment on antibiotic resistance, although no additional evidence to support this was included in the review.

Although cost may be a barrier for many of these practices, it is important to educate clinicians to take measures to prevent and recognise symptoms, and diagnose VAP. Collard et al also noted that to date, no RCT has evaluated the effectiveness of combined preventative practices. Given the high mortality rate associated with VAP, this research should be a priority.

Tracey Bucknall, RN, PhD
Associate Professor, Faculty of Medicine, Dentistry and Health Sciences
University of Melbourne, Carlton, Victoria, Australia