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Abstract 

Purpose – The purpose of this article is to present an empirical analysis of complex sample 

data with regard to the biasing effect of non-independence of observations on standard error 

parameter estimates. Using field data structured in the form of repeated measurements it is to 

be shown, in a two-factor confirmatory factor analysis model, how the bias in SE can be 

derived when the non-independence is ignored. 

 

Design/methodology/approach – Three estimation procedures are compared: normal 

asymptotic theory (maximum likelihood); non-parametric standard error estimation (naïve 

bootstrap); and sandwich (robust covariance matrix) estimation (pseudo-maximum 

likelihood). 

 

Findings – The study reveals that, when using either normal asymptotic theory or non-

parametric standard error estimation, the SE bias produced by the non-independence of 

observations can be noteworthy. 

 

Research limitations/implications – Considering the methodological constraints in 

employing field data, the three analyses examined must be interpreted independently and as a 

result taxonomic generalisations are limited. However, the study still provides “case study” 

evidence suggesting the existence of the relationship between non-independence of 

observations and standard error bias estimates. 



 

 

Originality/value – Given the increasing popularity of structural equation models in the 

social sciences and in particular in the marketing discipline, the paper provides a theoretical 

and practical insight into how to treat repeated measures and clustered data in general, adding 

to previous methodological research. Some conclusions and suggestions for researchers who 

make use of partial least squares modelling are also drawn. 
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Introduction and research background 

There has been a growing attention in recent years in analysing models fitting data collected 

from either longitudinal or more general surveys involving repeated measures that use 

complex sample designs (CSDs). A CSD typically refers to data acquired by stratification 

(often on the basis of geography), cluster sampling and/or sampling with an unequal 

probability selection (Kish, 1965; Lee and Forthofer, 2005; Skinner et al., 1989). Complex 

survey data are also referred to as multi-level or hierarchical data. Such designs, however, 

render the statistical analysis more complicated since the observations are not independent 

and identically distributed (IID). 

The conventional methods for estimating SEs included in most statistical software packages 

rely on a simple random samples (SRS) design (Lee and Forthofer, 2005; Skinner et al., 

1989). While independence of sample constituents is normally assumed, it is seldom realised 

in the procedures of practical survey work (Kish and Frankel, 1974). The assumption of 

independent observations, while not entirely essential for the estimation of parameters (e.g. 

path coefficients), is central for the SEs of those parameters (Frenkel and Frenkel, 1977; Lee 

and Forthofer, 2005; Skinner et al., 1989). Since conventional estimation of SEs assumes that 

the correlation of the errors across individuals is zero, a researcher using clustered data (e.g. 

data in the form of repeated measures) may underestimate the SE. Failure to use the 

appropriate statistical analysis leads, therefore, to an increased probability of committing 

Type I errors (erroneously rejecting the null hypothesis), underestimation of SEs and 

misleadingly positive test results (Kish and Frankel, 1974; Scariano and Davenport, 1987; 

Stapleton, 2006). 

In a Monte Carlo simulation study, Julian (2001) reported that covariance models that do not 

account for the multi-level structure of the data present estimation problems in the χ
2
 statistic, 

parameter estimates and SEs (when the intraclass correlations are >0.05). The author states 

that, in such a case, the effect of disregarding the data dependence can no longer be 

overlooked. Furthermore, when the group/member ratio decreases, the consequence of not 

accounting for the multi-level data structure will become more severe on the quality of 

estimation (Julian, 2001). However, other researchers such as Shackman (2001) and Maas 

and Hox (2005) revealed that in multi-level modelling the concern is not so much the 

intraclass correlation ρ (or rho), but the design effect (deff) which Shackman classified as a 

correction that should be used to determine sample size (Kish, 1965). 
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The Monte Carlo method is “an empirical method for evaluating statistics” (Paxton et al., 

2001, p. 289) and facilitates the investigator to examine the performance of a given test 

statistic across a number of random samples (Rubenstein, 1981). However, Monte Carlo 

studies have also been the object of various criticisms since they may lack strong theoretical 

underpinning guiding the design and analysis of the simulation and because of their 

questionable external validity and generalisability. Without strong theoretical grounding, 

simulation studies are often considered “to be akin to randomly looking for a needle in a 

haystack” (Paxton et al., 2001, p. 290). 

In this article, an analysis of field data is used to investigate whether the theories proposed by 

Julian (2001), Shackman (2001) and Maas and Hox (2005) hold in an applied field such as 

marketing. As far as the writer knows, there is no empirical research in the realm of 

marketing that has investigated the extent of the problems resulting from the application of 

nonhierarchical covariance structure modelling techniques which assume IID to complex 

sample data. It is argued that it is an empirical question as to whether or not interdependence 

between multi-level measures needs to be accommodated in models. 

Conventional wisdom in covariance structure analysis suggests that when data are non-

normally distributed, three different possible strategies are available to accommodate such an 

anomaly: (a) asymptotically distribution free[1] estimation (b) Satorra-Bentler scaled χ
2
 with 

robust standard errors and (c) non-parametric naïve bootstrapping. Most times, however, the 

use of one or the other procedure is dictated by the functionalities of the software package 

employed by the researcher. 

Of particular interest to this study is the bootstrapping procedure since relative to normal 

asymptotic estimation for SEs, bootstrapping has the advantage of calculating distribution-

free estimates of SEs and/or empirical confidence intervals for statistics having unknown 

sampling distributions (e.g. Diaconis and Efron, 1983; Efron, 1979; Efron and Tibshirani, 

1993). In non-parametric (or even called naïve) bootstrapping, the sample at hand is treated 

as a pseudo-population. Numerous units are drawn with replacement from the available 

dataset in order to engender a number of new datasets (bootstrap samples) that typically have 

the same number of units to the original. Sampling with replacement implies that in any new 

generated dataset, the same unit can materialise more than once and some units may not even 

be included. However, the structure of units will vary fairly across the created bootstrap 

samples. When iterated manifold times, non-parametric bootstrapping simulates the drawing 

of many samples from a population. SE are then computed as the SD of the separate 

estimates across all the new created samples. 

Indeed, it could be argued that when dealing with repeated measures, the use of naïve 

bootstrapping would be a suitable solution to breaking down the intraclass correlation 

providing perhaps more appropriate SE estimates than the ones computed using normal 

asymptotic theory. Notwithstanding, Hox and Mass (2001) contend that a complication may 

arise in using such a procedure since the naïve bootstrap sampling process should reflect the 

multi-level structure of the data. In other words, as in this case, the researcher should 

resample individuals (e.g. clusters of subjects) and then resample repeated measures (e.g. 

brand observations) within individuals. 

Thus, the current study offers an evaluation of three estimation procedures when observations 

are not IID. Using a two-factor confirmatory factor analysis (CFA) model, this article 

provides an analysis of: (a) normal asymptotic theory (maximum likelihood), (b) non-
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parametric SE estimation (naïve bootstrap) and (c) sandwich (robust covariance matrix) 

estimation (pseudo-maximum likelihood). 

To render the examination relatively simple and easy to interpret, using CFA, the 

psychometric properties and association of only two constructs were analysed. Cross-

sectional data were used in the form of repeated measurements of the same respondents 

across different brand ratings on a set of items. The items reflected two dimensions (i.e. brand 

investments and brand quality) that are part of the brand signalling framework proposed by 

Erdem and Swait (1998). Since the research question at hand is not hierarchical or multi-level 

in nature, it was employed “aggregated analysis of complex survey” data as suggested by 

Stapleton (2006), (also Muthén and Satorra, 1995), benefiting from the analysis of complex 

designs built in LISREL 8.8[2] (Jöreskog and Sörbom, 2006). The consequence for 

disregarding the dependencies among observations intrinsic to the multi-level data for their 

estimated SEs was appraised. In so doing, the analysis offered in this study is diverse from 

the one proposed by Julian (2001) for three reasons: (1) Julian (2001) used synthetic 

computer generated data while this study uses real field data, (2) Julian (2001) used a 

disaggregated analysis [with a multi trait multi method model], whereas this study proposes 

an aggregated analysis of complex survey data and (3) in the current study, the naïve 

bootstrapping estimation procedure is also included, whereas such an analysis was not 

offered by Julian (2001). 

The findings suggest that when using either normal asymptotic theory or non-parametric SE 

estimation, the SE bias produced by the nonindependence of observations can be extensive. 

Complex designs and clustering 

Repeated measures occur in many areas of research. It is not uncommon either in commercial 

or academic research to have repeated measures as a result of “stacking up” observations 

from different survey cycles. In the marketing discipline and particularly in the brand 

literature (e.g. Aaker, 1997; Dillon et al., 2001; Erdem and Swait, 1998, 2004; Erdem et al., 

2006) respondents are frequently asked to rate a set of items across different brands. In cross-

sectional data, repeated measures can be analysed as a two-level structure where 

measurement occurrences are level-1 units and respondents are level-2 units. Hence, these 

repeated observations can be regarded as additional clusters within the larger design. 

However, for a set sample size, cluster designs are subject to larger SEs. Because the 

calculation of the SEs entails the sample size in the denominator of the equation:(see equation 

1)when the observations are not independent, the effective sample size is not the mere 

number of cases in the dataset and an adjustment needs to be made in order to avoid the SEs 

being biased downwards. The discrepancy in the accuracy of the estimates generated by a 

CSD in relation to a SRS is known as the deff (Skinner et al., 1989). In samples characterised 

by clusters, the deff is the fraction of the actual variance, under the sampling method used, to 

the variance computed according to the postulation of SRS (Muthén and Satorra, 1995) and 

can be expressed as follows:(see equation 2)where deff is the design effect, ρ is the intraclass 

correlation for the variable under consideration and m is the cluster size. The intraclass 

correlation ρ can be expressed as a simple case of variance decomposition. It is comparable to 

a one-way analysis of variance (ANOVA) with random effects. In order to determine ρ, the 

outcome variability at each of the levels of the hierarchy needs to be established. As this 

study uses repeated measures in the form of brand ratings on a set of items, let the subscript i 

refer to the ith level-2 unit, in this instance, the ith respondent (who has completed the 

questionnaire). The subscript j refers to the rating of jth brand observation (cf. one of the 
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brand names observed in a specific item) for the ith respondent. Using this notation, the one-

way ANOVA model can be written as:(see equation 3)where y ij denotes the jth brand 

observation (within a particular item) for respondent i, β0 represents the intercept of the fixed 

part of the model, u 0i denotes the random variation in intercepts of level-2 of the model and 

εij represents the random variation of level-1 of the model. It is assumed that u ij has a value 

of 0 and variance of σ b 
2
 . The variance σ b 

2
 may be described as the “between-group” 

variability. At the same time, it is assumed that εij is N(0,σ w 
2
 ) distributed. Thus, σ w 

2
 may 

be described as the “within-group” variability. Such a model is also described as a fully 

unconditional model (Bryk and Raudenbush, 1992) as there are no predictors specified at 

either level of the hierarchy. ρ exhibits the degree of correspondence within each group and 

Shrout and Fleiss (1979, p. 423) expressed it as follows:(see equation 4)Hence, ρ indicates 

the fraction of total variability σ b 
2
+σ w 

2
 that can be attributed to the variability within 

cluster group σ w 
2
. When data are independent, ρ coefficients ought to be equal to zero. The 

scale of ρ hinges on the relation between the characteristics of the groups (i.e. structure, size 

and function) and the variable measured (Julian, 2001; also Kish, 1965). 

Application to signalling data 

This study follows previous work (Erdem and Swait, 1998) in signalling theory which 

developed an information economics perspective on the value (or equity) attributed to brands 

by consumers. Signalling theory explains how high-quality firms can differentiate themselves 

from the lower quality ones. Based on this theory, it has been argued that brand signalling 

inferences emerge from dissipative signals (Rao et al., 1999), which derive from an ex ante 

expenditure comprising investment in building a reputation that could be lost, should the 

promised product quality not correspond to the actual quality delivered (Erdem and Swait, 

1998). A brand incorporates and represents a firm's past and present marketing mix activities 

and brand investments (Erdem and Swait, 1998). Firms spend resources on their brands to 

guarantee that promises are maintained. In addition, firms make brand investments to exhibit 

commitment to their brands (Klein and Leffler, 1981). Brand investments contribute to 

credibility by signalling. When a branded product fails to fulfil the promise expressed in the 

brand signal, the brand compromises the expected returns on these brand investments as well 

as its reputation for delivering on its promises (Erdem and Swait, 1998). The literature 

suggests that investments in brand strategies and activities (e.g. brand logo, sponsorship or an 

influential advertising campaign) are sunk costs that cannot be recuperated (Ippolito, 1990). 

If the credibility of the brand is compromised the firm cannot command the premium 

associated with its reputation and brand investment (Erdem and Swait, 1998). 

Using CFA, the model examined the relationship between brand investment and brand 

quality. Both constructs are reflective latent variables in the brand signalling framework 

proposed by Erdem and Swait (1998). Brand ratings obtained from 239 members of an online 

panel in Australia were used in order to assess the two dimensions of the signalling 

framework in the jeans (121 surveys) and digital cameras (118 surveys) product categories. 

Each respondent rated eight brands; therefore, there were a total of 1,912 individual 

observations at the brand level (968 for jeans and 944 for digital cameras). Scales similar to 

the ones employed by Erdem and Swait (1998, 2004) and Erdem et al. (2006) were used. 

Consistent with Erdem and Swait (1998, 2004) and Erdem et al. (2006) all items were 

measured on 9 point Likert scales. Following the same methodology used in Erdem and 

Swait (1998) and Erdem et al. (2006), data were stacked in one single matrix in order to 

produce a pooled model across different brands and the two product categories. The data 

were balanced, that is, there were the same number of brand observations per respondent. The 
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data lent themselves to be modelled via complex sample analysis since they were structured 

in the form of repeated measurements of the same respondents across different brand ratings 

on a set of items. 

Data analysis 

First, it was assessed the two factor CFA pooled model making use of LISERL 8.8 (Jöreskog 

and Sörbom, 2006), employing design base adjustment of the likelihood ratio test (LRT) 

statistic which automatically rescales χ
2
 value and estimates “robust” SE (for a detailed 

estimation procedure, Scientific Software International Inc., 2005). All λ and φ were left free 

to vary/covary, while the variance of each latent variable was set to 1. 

The model converged very well resulting in χ
2
 = 4.36, df = 4, p  = 0.35945, root mean square 

error of approximation (RMSEA) = 0.007 (90 per cent confidence interval for 

RMSEA = 0.000 – 0.0358 and p-value for test of close fit RMSEA < 0.05 = 0.997) with 

standardised φinvest,qual = 0.88 (p = 0.000). All the λs were statistically significant (p  = 0.000). 

The average variance explained was >0.5 and the composite reliability (CR) was >0.7 

suggesting that convergent validity was achieved (e.g. Dillon and Goldstein, 1984; Fornell 

and Larker, 1981). On the other hand, discriminant validity was assessed by constraining the 

correlation parameter between the two latent variables to 1. If the Δχ
2
 between the 

constrained and unconstrained models is statistically significant, it is likely that the 

correlation for the two latent variables is indeed not 1 (cf. Anderson and Gerbing, 1988; 

Bagozzi et al., 1991). However, because the rescaled χ
2
 does not follow a normal χ

2
 

distribution the Δχ
2
 between the nested models was estimated following the correction given 

by Satorra and Bentler (2001). The estimation procedure is reported in the Appendix. 

The Δχ
2
 resulted in a value of 13.528 for 1 df (p  = 0.000) suggesting that even in this 

instance the test was positive, indicating that discriminant validity was achieved. A good 

fitting model allowed the study to progress to the next phase of the research. In order to 

observe the effects of ρ and deff on the SEs estimation, this study considered three 

respondent/repeated measures configurations for the multi-level data: (a) 239 respondents 

with eight brand observations each, (b) 239 respondents with five brand observations each 

and (c) 239 respondents with three brand observations each. Two of the above configurations 

((b) and (c)) were achieved by subdividing the dataset into two further data subsets. The 

number and nature of brands chosen for this experiment were selected randomly from the 

available dataset and they were consistent across all respondents (cf. all the brand names 

were constant across individuals). The number of brand observations per individual was 

manipulated with the expectation of having an incremental/decremental effect on ρ. On the 

other hand, as stated previously, it is known that such a manipulation is, ceteris paribus, 

likely to influence deff estimates since the number of brand observations per individual is a 

function of deff itself (equation 2). However, the above manipulation resulted in unequal 

sample sizes in the three configurations as in (a) n = 1,912, in (b) n = 1,195 and in (c) n = 717. 

Notably, it could be argued that the three models may not comparable because the variability 

from one data subset to another dictates that the parameter estimates will vary according to 

what data are observed as well as the sample sizes. Yield estimates from a particular model 

depend on the parameter estimates, and so the yield estimates themselves are variable. 

However, because field data are used, one cannot specify a priori parameter values for these 

models to produce the desired ρ (as one would normally do in a Monte Carlo simulation). As 

an alternative solution, this study presents the analysis of nine models whereby, following the 
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three configurations proposed above, the SEs of three models in (a), (b) and (c) obtained from 

normal asymptotic theory (maximum likelihood estimation) and via naïve bootstrapping [in 

this case AMOS 7 (Arbuckle, 2006) was employed in order to produce 2,000 bootstrap 

samples] are compared with their respective models calculated with the “sandwich” estimator 

(pseudo maximum likelihood estimation as portrayed in Pfeffermann et al., 1998) to generate 

robust estimates using LISREL 8.8 (Jöreskog and Sörbom, 2006). In summary, this study 

evaluates the SEs of: 

 model (a) with 239 respondents with eight brand observations each obtained from 

normal asymptotic theory and model (a
′
) which used naïve bootstrapping vs. model 

(a
′′
) which utilised the sandwich estimator; 

 model (b) having 239 respondents with five brand observations each obtained from 

normal asymptotic theory with model (b
′
) which used naïve bootstrapping vs model 

(b
′′
) which utilised the sandwich estimator; 

 model (c) having 239 respondents with three brand observations each obtained from 

normal asymptotic theory with model (c
′
) which used naïve bootstrapping vs model 

(c
′′
) which utilised the sandwich estimator. 

Since the SEs of the models (
′′
) are properly specified and “robust”, the SE estimates of these 

are taken as baselines to be compared with the estimates (and consequent misspecifications) 

of the models computed with normal asymptotic theory and naïve bootstrap. The percentages 

Δ in SEs between the three models represents the SE misspecifications given by the SRS 

design. 

Findings 

Table I shows ρ, deff and SEs of the nine models for the λ the ψ as well as the φinvest,qual 

parameter estimates ρ8, deff8 and SEs8 refer to both models (a, a
′
 and a

′′
) with eight repeated 

measures ρ5, deff5 and SEs5 to models (b, b
′
 and b

′′
) with five repeated measures and ρ3, deff3 

and SEs3 to models (c, c
′
 and c

′′
) with 3 repeated measures per respondent. 

Bias per cent measures the bias of the asymptotic (ML) estimation vs the sandwich estimation 

and the bias of the bootstrap estimation vs the sandwich estimation which are calculated as 

follows:(see equation 5)The findings suggest a relationship between the deff and the SEs 

bias. If, for instance, one observes the deff coefficients in all the λ estimations, it can be noted 

that in all the parameters deff8>deff5>deff3, respectively, bias8>bias5>bias3 for both 

asymptotic and naïve bootstrapping estimation, suggesting the larger the deff the larger the 

bias. It is also interesting to observe that relative to φinvest,qual, bias8>bias5>bias3. However, it 

is somewhat surprising to note that there is little difference in ρ relative to the number of 

observations per individual. In fact, relative to the λ and ψ parameters, ρ3 ≅ρ5 ≅ ρ8. 

Conclusion 

One conclusion that can be drawn from this study is that taxonomic outcomes based on 

relationships between ρ, deff and the SEs misspecifications cannot be rigorously derived. 

Admittedly, the biggest limitation of this research is that the three case studies examined 

therein must be interpreted independently since, in order to manipulate ρ and deff, three 

different data subsets were used. However, considering the methodological constraints in 

employing field data and the impossibility to link the three independent analyses, the study 

still provids some “case study” evidence that might suggest the existence of such a 
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relationship. Using real data, this article confirms the findings of Julian (2001), Shackman 

(2001) and Maas and Hox (2005), that is: (a) when ρ>0.05 the multi-level structure of the 

data cannot be disregarded in estimating a proper SE and (b) as previously suggested there 

would seem to be a relationship between the deff and SE estimates misspecifications. 

A further important finding reported in this article, as pointed out by Hox and Mass (2001), is 

that when data are clustered, even non-parametric SE estimations do not seem to help. While 

the bias produced by naïve bootstrapping is smaller than the one produced by normal 

asymptotic theory estimation, it is worth noting that such a bias is still considerable. This is 

particularly relevant for researchers who use, for instance, partial least squares modelling 

(Wold, 1985), which employs nonparametric SE estimation. As of this writing, the writer is 

not aware of any partial least squares software package that has the ability to undertake CSD 

computations and as a result researchers who are dealing with clustered or more general 

complex sample data would need to write a specific program to perform such estimations. 

Notes 

1. Different variants of robust weighted least squares procedures are implemented in 

different software packages. 

2. All the complex design estimations have also been reconciled using Mplus 5.1 

(Muthén and Muthén, 2008). 

 
Table I.SE misspecifications according to SRS design 

 
(see equation 1) 
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(see equation 2) 

 
(see equation 3) 

 
(see equation 4) 

 
(see equation 5) 

 
(see equation 6) 

 
(see equation 7) 



 
(see equation 8) 
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Appendix. χ2 

difference testing using the scaled 

χ
2
  

In order to compute Δχ
2
 testing, the following estimates are needed: 

 scaled χ
2
 (ScM χ

2
) for the MORE constrained model = 20.199; 

 normal χ
2
 (NM χ

2
) for the MORE constrained model = 113.553; 

 degrees of freedom (dfM) for the MORE constrained model = 5; 

 scaled χ
2
 (ScL χ

2
) for the LESS constrained model = 4.360; 

 normal χ
2
 (NL χ

2
) for the LESS constrained model = 23.376; and 

 degrees of freedom (dfL) for the LESS constrained model = 4. 

The scaling correction factors of both models are first computed:(see equation 6)Second, it is 

estimated the difference test scaling (dts) correction where dfM is the degrees of freedom in 

the more constrained model and dfL is the degrees of freedom in the less constrained 

model:(see equation 7) 

Third, the scaled χ
2
 difference test (ScΔχ

2
) is computed as follows:(see equation 8) 
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