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Abstract— The use of Kalman filtering is very common in state
estimation problems. The problem with Kalman filters is that
they require full prior knowledge about the system modeling. It
is also assumed that all the observations are fully received. In real
applications, the previous assumptions are not true all the time.
It is hard to obtain the exact system model and the observations
may be lost due to communication problems. In this paper, we
consider the design of a robust Kalman filter for systems subject
to uncertainties in the state and white noise covariances. The
systems under consideration suffer from random interruptions
in the measurements process. An upper bound for the estimation
error covariance is proposed. The proposed upper bound is
further minimized by selection of optimal filter parameters.
Simulation example shows the effectiveness of the proposed filter.

I. INTRODUCTION

Kalman filters are widely used in state estimation problems

[1]. However, the use of Kalman filters requires prior knowl-

edge about the system under consideration and if these are not

appropriately known, the estimation process will not be opti-

mal and it may even diverge. In addition , it is assumed that all

the observations are available during estimation, since Kalman

filters are sensitive to incomplete or missing measurements

[12],[13],[15]. In real-world applications, these assumptions

are not always accurate; since there are applications for

which the exact system model is hard to obtain and only

approximations to the real model are available. Moreover,

the observations are not guaranteed to include the signal of

interest; instead, the observations may contain only noise in a

random manner, and in this case, they are called false alarms.

In this paper, the problem of state estimation is addressed

for systems suffering from two classes of uncertainties: un-

certainty in the modeling parameters and uncertainty in the

observation process. Uncertainty in the modeling parameters

refers to the problem of not knowing the exact model param-

eters that describe the input and the output processes. Such

uncertainty is common in industries, such as the minerals and

materials industry [2]. The uncertainties can be due to several

reasons, such as linearization, unmodeled dynamics, or model

reduction [16]. For such cases, the classical Kalman filters

are not suitable and there is no guarantee that the filters will

provide the optimal parameter estimation. The uncertainties in

the modeling parameters in this paper will be represented as

norm-bounded uncertainties. We adopt this approach so that to

prove the the estimation error covariance is guaranteed to fall

below a certain upper bound. Although the estimation in this

case is not guaranteed to be optimal, in many applications such

as tracking, it is the goal to guarantee estimation robustness

rather than optimality criteria [11].

The problem of interest in this paper has recently gained

much of interest in research [2]-[8]. The problem has been

addressed for continuous-time and discrete-time systems and

for time-invariant and time-varying systems. The uncertainties

were assumed to be either time-invariant or time-variant.

Petersen and McFarlane addressed continuous time-invariant

systems with uncertainties in the state matrix to get the optimal

guaranteed-cost estimation filter [2]. Later, they provided

the optimal guaranteed-cost estimator for continuous time-

invariant systems with norm-bounded uncertainties in the state

and output matrices [3]. They addressed the discrete time-

invariant systems with norm-bounded uncertainties in the state

matrix in [4]. Xie et al. in [5] and [6] have presented a

robust Kalman filter with a guaranteed bound on the estimation

error for linear continuous and discrete time-invariant systems,

respectively, with time-varying norm-bounded uncertainties in

the state and output matrices.In [7], X. Zhu et al. found the

robust filters in the finite and infinite horizon cases where they

assumed the uncertainty is in the state and output matrices.

Z.Dong and Z. You in [8] have presented a robust finite-

horizon Kalman filter for linear discrete time-varying systems

with time-varying norm-bounded uncertainties in the state,

output and white noise covariance matrices. The aforemen-

tioned work have assumed that all the observations are avail-

able at the time of estimation. The main difference between

this work and the literature reviewed is that we consider

systems subject to uncertainty in the state, output and white

noise covariance matrices combined with the possibility of
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missing measurements which is the more general case.

The second type of uncertainty is the uncertainty in the

observation process. In this type, there is a nonzero probability

that the observed signal contains only noise without the signal

of interest. This problem may rise in tracking applications

when the object being tracked has high maneuverability, and

also in the case of failures in the measuring sensors, high

noise environments, and poor communication resources [13].

The problem of observation uncertainty has been investigated

by many researchers. It was first addressed for a class of

linear filters by Nahi [9] who obtained the optimal state

estimator with uncertain observations. The uncertainty in the

observations was assumed to be independent and identically

distributed (i.i.d.). The work in [10] has generalized the work

of Nahi where the uncertainty is not necessarily i.i.d.

Fewer papers were published on the problem of uncertain

observations combined with the norm-bounded uncertainties

in the modeling parameters. In [14] and [15], the problem of

robust filtering in the case of missing measurements was stud-

ied using a jump Riccati equation approach. Robust Kalman

filtering for systems suffering from missing measurements was

developed by Zidong Wang et al. [17] in the infinite-horizon

case. They solved the problem for the finite-horizon case in

[18] where a robust finite-horizon filtering for linear discrete

time-varying systems with time-varying norm-bounded un-

certainty in the state matrix and the possibility of missing

measurements was provided. In this work, the approach of [18]

and [8] is adopted to derive the robust finite-horizon Kalman

filter for the discrete time-varying systems with time-varying

norm-bounded uncertainties in the state and the white noise

covariance matrices in the case of missing measurements. Our

objective is to provide the robust filtering for systems with

uncertain block in the modeling parameters and the possibility

of missing measurements in a recursive form to be suitable for

online applications and the resulting filter does not include the

uncertain block. Simulation example is provided to illustrate

the effectiveness of the proposed filter.

The rest of the paper is organized as follows: Section II

provides the problem formulation and necessary assumptions,

Section III derives the robust finite-horizon Kalman filter,

and Section IV provides a simulation example. Section V

concludes this work.

II. PROBLEM FORMULATION

The systems under consideration in this paper are defined

as

xk+1 = (Ak + ΔAk)xk + (Bk + ΔBk)wk (1)

Where xk ∈ �n is the state vector and wk ∈ �m is

white Gaussian noise sequence with zero mean and covariance

Rk > 0 . The initial state x0 has mean value x̄0 and initial

covariance value P0. Ak,Bk are known real time-varying

matrices with appropriate dimensions. The matrices ΔAk and

ΔBk are the uncertainties in the state and process noise

matrices, respectively, and

ΔAk = H1,kFkE1,k

ΔBk = H1,kFkE2,k

Where Fk ∈ �rs is the norm-bounded time-varying uncer-

tainty, i.e.

FT
k Fk < I

The matrices H1,k,E1,k and E2,k are known matrices with

appropriate dimensions and they represent how the system

will be affected by the norm-bounded uncertainty and I is the

identity matrix with appropriate dimension. The observation

process with the possibility of missing measurements will have

the form

yk = γkCkxk + (Dk + ΔDk)vk (2)

Where the variable γk ∈ � is a Bernoulli distributed white

sequence taking values 0 and 1 randomly with

P (γk = 1) = μk

P (γk = 0) = 1 − μk

Where μk ∈ � is the percentage of successful arrival of

measurements and it can be obtained by test sessions. yk ∈ �p

is the measurement output vector, vk is the measurements

noise which is assumed white Gaussian sequence with mean

zero and covariance Vk > 0. Ck is a known time-varying

matrix of appropriate dimension.

The matrix ΔDk = H2,kFkE2,k will represent the un-

certainty in the output noise covariance. It is assumed that

γk,wk,vk and x0 are mutually uncorrelated.

Consider the following filter for the uncertain system (1),(2)

x̂k+1 = Âkxk + K̂k[yk − μkCkx̂k] (3)

Where k ∈ [0, N ], x̂k ∈ �n is the estimated state value, Âk

and K̂k are the filter parameters to be determined, assume

x̂0 = x0. In the next section we will show that the estimation

error covariance can be upper-bounded and we will determine

a candidate upper bound.

III. ROBUST FILTER DESIGN

In this section, our goal is to design the robust Kalman

filter that guarantees an upper bound on the estimation error

covariance and this upper bound is guaranteed to be minimal.

The first step is to find the possible upper bound and the

second step will be to derive the optimal filter that leads to

this bounded estimation.

A. Upper Bound on the Estimation Error Covariance

To obtain a possible upper bound for the estimation error

covariance, we will use the following lemma

Lemma 1 [8] For a given set of matrices A,H ,E and F
where FFT ≤ I , X is a positive definite matrix. If there exist

arbitrary α > 0 that satisfy α−1I −EXET > 0 then we have

(A + HFE)X(A + HFE)T ≤ AXAT

+ AXET (α−1I − EXET )−1EXAT

+ α−1HHT



Our next step will be to formulate the problem to be

similar in structure as in lemma 1 so that we can conclude

the existence of an upper bound on the estimation error

covariance.

Using the approach in [16] and taking into consideration

the addition of norm-bounded uncertainties in the process and

measurement white noise covariance matrices, we formulate

the augmented state-space model combining the system (1)-

(2) and the filter (3). Define the state vector as

x̃k =

[
xk

x̂k

]

And the augmented state-space model

x̃k+1 = (Ãk + H̃1,kFkẼ1,k)x̃k + Ãekx̃k

+(B̃k + H̃2,kF̃kẼ2,k)w̃k (4)

where

Ãk =

[
Âk 0

μkK̂kCk μkK̂kCk − Âk

]

Ãe,k =

[
0 0

(γk − μk)K̂kCk 0

]

Ẽ1,k =
[

E1,k 0
]
, Ẽ2,k =

[
E2,k 0

0 E2,k

]

H̃1,k =

[
H1,k

0

]
, H̃2,k =

[
H,k 0

0 K̂kH2,k

]

B̃k =

[
Bk 0

0 K̂kDk

]
, w̃k =

[
wk

vk

]

F̃k =

[
Fk 0
0 Fk

]

The covariance matrix of the state vector (4) is

Σ̃k = E[x̃kx̃T
k ]

The Lyapunov equation that governs its evolution is defined

as

Σ̃k+1 = (Ãk + H̃1,kFkẼ1,k)Σ̃k(Ãk + H̃1,kFkẼ1,k)T

+Ψk + (B̃k + H̃2,kF̃kẼ2,k)

.W̃k(B̃k + H̃2,kF̃kẼ2,k)T (5)

And since Ψk has mean zero

Ψk = (1 − μk)μk

[
0 0

K̂kCk 0

]
Σ̃k

[
0 0

K̂kCk 0

]T

(6)

Now we can see that the error covariance of the augmented

system (5) is similar to the structure in lemma 1, we can get

the following result:

Theorem 1: If there exist arbitrary α > 0 such that α−1I −
Ẽ1,kΣ̃kẼT

1,k > 0 and there exist arbitrary β > 0 such that

β−1I − Ẽ2,kW̃kẼT
2,k > 0 , we get

Σ̃k+1 ≤ ÃkΣ̃kÃT
k + ÃkΣ̃kẼT

k (α−1I − Ẽ1,kΣ̃kẼT
1,k)−1

× Ẽ1,kΣ̃kÃT
k + α−1H̃1,kH̃T

1,k + Ψk

+ B̃kW̃kB̃T
k

+ B̃kW̃kẼT
k (β−1I − Ẽ2,kW̃kẼT

k )−1

× ẼkW̃kB̃T
k + β−1H̃2,kH̃T

2,k (7)

With initial value

Σ̃0 =

[
P0 0
0 0

]

and if we have Σk+1 where

Σk+1 = ÃkΣkÃT
k + ÃkΣkẼT

k (α−1I − Ẽ1,kΣkẼT
1,k)−1

× Ẽ1,kΣkÃT
k + α−1H̃1,kH̃T

1,k + Ψk

+ B̃kW̃kB̃T
k

+ B̃kW̃kẼT
k (β−1I − Ẽ2,kW̃kẼT

k )−1

× ẼkW̃kB̃T
k + β−1H̃2,kH̃T

2,k (8)

where

α−1I − Ẽ1,kΣkẼT
1,k > 0 (9)

β−1I − Ẽ2,kW̃kẼT
2,k > 0 (10)

Then Σ̃k ≤ Σk when Σk satisfies (8) and Σk will be a possible

upper-bound for the estimation error covariance. The proof is

obvious since Σk and Σ̃k have the same initial value

Σ0 = Σ̃0

and the use of the structure of Lemma 1.

B. Optimal Filter Design

Deriving the robust finite-horizon Kalman filter (3) leads to

the following result

Theorem 2: The optimal filter parameters Âk and K̂k will

be

Âk = Ak + (Ak − μkK̂kCk)Σ̄k

ET
1,k(α−1

k I − E1,kΣ̄kET
1,k)−1E1,k (11)

And

K̂k = βkAk(Σ̄k − αkET
1,kE1,k)−1

.CT
k [CkSkCT

k + DkTkDT
k

+(α−1

k + β−1

k H2,kHT
2,k)]−1 (12)

Where

Sk = Σ̄k + Σ̄kET
1,k(α−1

k I − E1,kΣ̄kET
1,k)−1E1,kΣ̄k (13)

And

Tk = Rk + RkET
1,k(β−1

k I − E1,kRkET
1,k)−1E1,kRk (14)



The state and error covariance will be, respectively

Pk+1 = Ak(Σ̄−1

k − αkET
1,kE1,k)−1AT

k

+Bk(R−1 − βkET
2,kE2,k)−1BT

k

+(α−1

k + β−1

k )H1,kHT
1,k (15)

Σ̄k+1 = −μ2

kAk(Σ̄−1

k − αkET
1,kE1,k)−1CT

k [CkSkCT
k

+DkTkDT
k + (α−1

k + β−1

k )H2,kHT
2,k]−1

.Ck(Σ̄−1

k − αkET
1,kE1,k)−1AT

k

+Ak(Σ̄−1

k − αkET
1,kE1,k)−1AT

k

+Bk(R−1

k − βkET
2,kE2,k)−1BT

k

+(α−1

k + β−1

k )H1,kHT
1,k (16)

proof: Assume the solution to (8) is of the form

Σk =

[
Σ1,k Σ2,k

Σ2,k Σ2,k

]
(17)

And its initial value is Σ0 =

[
P0 0
0 0

]

To prove that it is a solution to (8), we will use induction.

We can see that they are equivalent in the initial case. Assume

the argument is valid at time k. We will show that the argument

is still valid at time k + 1

Let

Σk+1 =

[
Σ1,k+1 Σ12,k+1

Σ21,k+1 Σ2,k+1

]
(18)

and substituting (18) into (8) we get

Σ1,k = Ak(Σ−1

k − αkET
1,kE1,k)−1AT

k

+(α−1

k + β−1

k )H1,kHT
1,k

+Bk(R−1

k − αkET
2,kE2,k)−1BT

k

Σ12,k = Ak(Σ−1

k − αkET
1,kE1,k)−1CT

k K̂T
k

+Bk(R−1

k − αkET
2,kE2,k)−1BT

k

Σ21,k = ΣT
12,k

Σ2,k = (Âk − μkK̂kCk)(Σ−1

k − αkET
1,kE1,k)−1

.(Âk − μkK̂kCk)T

+μ2

kK̂kCk(Σ−1

k − αkET
1,kE1,k)−1CT

k K̂T
k

+(α−1

k + β−1

k )K̂kH2,kHT
2,kK̂T

k

+K̂kDk(V −1

k − βkET
2,kE2,k)−1DT

k K̂T
k (19)

It can be shown that Σ12,k+1 = Σ2,k+1 and (17) will be a

solution to (8).

To derive the optimal filter parameters, let

Σ̄k =
[

I −I
]
Σk

[
I −I

]T
, then

E[(xk − x̂k)(xk − x̂k)T ] ≤ tr(Σ̄k) (20)

The function tr(.) refers to the trace of a matrix.

Σ̄k+1 = α−1

k (H1,k − K̂kH2,k)(H1,k − K̂kH2,k)T

+Bk(R−1

k − αkE2,kET
2,k)−1BT

k

+β−1

k H1,kHT
1,k + (α−1

k + β−1

k )K̂kH2,kHT
2,kK̂T

k

+K̂kDk(V −1

k − βkE2,kET
2,k)−1DT

k K̂T
k

+μk(1 − μk)K̂kCkΣ1,kCT
k K̂T

k

+
[

Ak − μkK̂kCk μkK̂kCk − Âk

]

.(Σ−1

k − αkẼT
1,kẼ1,k)−1

[
Ak − μkK̂kCk μkK̂kCk − Âk

]T
(21)

In order to find the optimal filter parameters Âk and K̂k

that minimize Σ̄k+1, we take the first variation to (21) with

respect to Âk and K̂k and obtain

∂Σ̄k+1

∂Âk

=
[

Ak − μkK̂kCk μkK̂kCk − Âk

]

.(Σ−1

k − αkẼT
1,kẼ1,k)−1

[
0 −I

]T

= 0 (22)

and

∂Σ̄k+1

∂K̂k

= α−1

k (H1,k − K̂kH2,k)(−H2,k)T

+(α−1

k + β−1

k )K̂kH2,kHT
2,k

+K̂kDk(V −1

k − βkET
2,kE2,k)−1DT

k

+μk(1 − μk)K̂kCkΣ1,kCT
k

+
[

Ak − μkK̂kCk μkK̂kCk − Âk

]

.(Σ−1

k − αkẼT
1,kẼ1,k)−1

[ −μkCk μkCk

]T
= 0 (23)

Following some algebraic manipulations, the filter parame-

ters Âk and K̂k will be of the form

Âk = Ak + (Ak − μkK̂kCk)Σ̄k

.ET
1,k(α−1

k I − E1,kΣ̄kET
1,k)−1E1,k (24)

and

K̂k = (μkAkSkCT
k + α−1

k H1,kHT
1,k)R̂−1

k (25)

where

R̂k = CkSkCT
k + DkTkDT

k + (α−1

k + β−1

k )H2,kHT
2,k

+μk(1 − μk)CkΣ̄kCT
k

Sk = (Σ−1

k − αkET
1,kE1,k)−1 (26)

Tk = (V −1

k − αkET
2,kE2,k)−1 (27)

These filter parameters guarantee that the estimation error

covariance will be upper bounded by the proposed upper

bound Σ̄k and this ends the proof.



IV. SIMULATION RESULTS

In this section, we will demonstrate the effectiveness of

the proposed filter in the state estimation of systems with

uncertainties in the process and noise covariance matrices

combined with the possibility of missing measurements. We

will use the system used in [18] and add the uncertain block

to the process and output noise covariances. The parameters

for the simulation of system (1),(2) are:

Ak =

[
0 0.sin(6k)

0.2 0.3

]

Ck =
[

0.5 + 0.3sin(6k) 1
]

Bk =

[
1

0.5

]
, Dk = 2.3

H1,k =

[
0.5
1

]
, E1,k =

[
0.2 0.1

]

H2,k = 4, E2,k = −0.7

αk = 3, βk = 1, μk = 0.8

x0 =

[
1
0

]
, Fk = sin(0.6k)

P0 = 2I, Σ̄0 = I

E[γk] = 0.8

The simulation shows in Figs. 1 and 2 that the proposed robust

Kalman filter is bounded by the proposed upper bound while

the conventional Kalman filter exceeds it. It also shows that

The robust Kalman filter outperforms the conventional Kalman

filter in the case of possible missing measurements and the

existence of uncertainty blocks in the modeling parameters. A

comparison between the proposed robust Kalman filter which

considers the possible uncertainty in the noise covariances

and the robust Kalman filter presented in [18] is made in

figs. 3 and 4. By seeing that the proposed robust Kalman

filter has lower error variance, figs. 3 and 4 demonstrate the

effectiveness of considering the existence of uncertainties in

the noise covariance matrices.

V. CONCLUSION

In this paper, a robust finite-horizon Kalman filter was

presented for systems suffering from norm-bounded uncer-

tainty blocks in the state and the noise covariances. The

systems under consideration also suffer from random missing

measurements. The filter was obtained in a recursive form

to be suitable for online applications and it does not include

the uncertain block. The upper bound on the estimation error

covariance was obtained. The upper bound was guaranteed

to be minimal by selection of the optimal filter parameters.

If the system parameters are known precisely and all the

measurements are guaranteed to arrive to the estimation point,

then the proposed robust Kalman filter will be equivalent to

the conventional Kalman filter.
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