This is the published version of the presentation:

Available from Deakin Research Online:

http://hdl.handle.net/10536/DRO/DU:30018727

Reproduced with the kind permission of the copyright owner.

Copyright : 2008, Deakin University
Economic Evaluation of the SunSmart Program: Achievement in the past and prospect for the future

Sophy TF Shih
Health Economics Unit
Public Health Research Policy and Evaluation Cluster

The difference is Deakin University
Acknowledgement

> **Prof. Rob Carter, Cathy Mihalopoulos**
 - Health Economics Unit, Public Health Research Policy and Evaluation Cluster

> **Craig Sinclair**
 - Cancer Education Unit, The Cancer Council Victoria

> **Prof. Theo Vos**
 - School of Population Health, University of Queensland
Background

> Australia has the highest skin cancer in the world:
 - Malignant Melanoma
 - Non-Melanomic Skin Cancer (NMSC)
 - Basal cell carcinoma (BCC)
 - Squamous cell carcinoma (SCC)
> Most common cancer: 2 in 3 Australians can expect to have NMSC treated by the age of 70
> Most expensive cancer in Australia: more than $294 million spent annually on the diagnosis and treatment of skin cancer
> Most significant component of skin cancer: preventable
Public Health Campaigns

- Existence for decades
- “Slip Slop Slap” Campaign in Victoria in early 1980s
- Rolled into a multi-faceted skin cancer prevention program: SunSmart
- National initiative delivered primarily through Cancer Councils across Australia under the brand name
Investment in SunSmart (I)

> Varied considerable over the years and between states
> Often well below the level for a comprehensive program
> Reflecting fiscal constraints in the State/Territories
> The Australian Government for the first time in 2006/2007 invested $5m; no commitment made beyond the initial period.
Investment in SunSmart (II)

Table 1: Historical expenditures ($ per capita) on sun protection programs in each current year value and in reference year (2003) values, in Victoria (Vic), New South Wales (NSW) and Queensland (Qld)

<table>
<thead>
<tr>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>VIC</td>
<td>0.26</td>
<td>0.27</td>
<td>0.24</td>
<td>0.28</td>
<td>0.09</td>
<td>0.22</td>
<td>0.22</td>
<td>0.22</td>
<td>0.26</td>
<td>0.26</td>
<td>0.26</td>
<td>0.26</td>
<td>0.15</td>
<td>0.13</td>
<td>0.12</td>
<td>0.20</td>
<td>0.20</td>
<td>0.20</td>
<td>0.19</td>
</tr>
<tr>
<td>NSW</td>
<td>-</td>
<td>0.02</td>
<td>0.13</td>
<td>0.15</td>
<td>0.15</td>
<td>0.16</td>
<td>0.13</td>
<td>0.14</td>
<td>0.20</td>
<td>0.24</td>
</tr>
<tr>
<td>QLD</td>
<td>-</td>
<td>0.03</td>
<td>0.02</td>
<td>0.02</td>
<td>0.01</td>
<td>0.08</td>
<td>0.07</td>
<td>0.02</td>
<td>0.01</td>
<td>0.02</td>
</tr>
<tr>
<td>Australia</td>
<td>0.25</td>
<td>0.26</td>
<td>0.23</td>
<td>0.28</td>
<td>0.10</td>
<td>0.22</td>
<td>0.22</td>
<td>0.22</td>
<td>0.26</td>
<td>0.26</td>
<td>0.10</td>
<td>0.15</td>
<td>0.12</td>
<td>0.11</td>
<td>0.13</td>
<td>0.14</td>
<td>0.13</td>
<td>0.15</td>
<td>0.17</td>
</tr>
</tbody>
</table>

In Reference Year (2003) Value

VIC	0.41	0.40	0.35	0.39	0.12	0.29	0.29	0.28	0.33	0.32	0.31	0.29	0.16	0.14	0.12	0.20	0.19	0.19	0.18	
NSW	0.02	0.08	0.10	0.10	0.10	0.08	0.08	0.12	0.14											
QLD	0.03	0.02	0.03	0.01	0.09	0.07	0.02	0.02	0.01	0.02										
Australia	0.41	0.40	0.35	0.39	0.12	0.29	0.29	0.28	0.33	0.32	0.11	0.14	0.10	0.09	0.10	0.12	0.10	0.12	0.12	

Source: provided by the Australian Cancer Council based on information collected from the three State SunSmart programs.
Previous Study

> Carter et al (1999) conducted an economic study to determine the potential cost-effectiveness of a national sun protection program of $5 million investment per annum for 20 years

> Sunburn incidence was used as a proxy for outcome measurement in relation to reduction in cancer incidence

> The study found the intervention would potentially be excellent value-for-money, from the Australian Government perspective
Study Objective

> Undertake an economic evaluation of the SunSmart program, from the government as a “third-party funder” perspective to make up-to-date informed policy.
> To demonstrate the C/E of the past SunSmart program
> To determine the potential C/E of an on-going national upgraded SunSmart program for the next 20 years
> A broader “health sector” perspective is taken
 - as per ACE-Prevention Project to compare across 100 preventive intervention using the same methodology
 - to recognize the role of individuals in compliance of the SunSmart message and ensuring the success of the program
Definition of intervention

> For the past –
 - Intervention: a well-resourced SunSmart in Victoria
 - Comparator: under-invested states (NSW/Qld)

> For the future 20 years –
 - Intervention: an upgraded on-going national SunSmart program with an “optimal” investment level as at the historical average of Vic.
 - Comparator: a SunSmart program operating at a much lower level of investment as at the average of NSW/Qld, reflecting current practice
Assessing Program Effectiveness (I)

> Doubt emerging as to its validity, based on a divergent trends in observed sunburn incidence and skin cancer incidence
Assessing Program Effectiveness (II)

> By analyzing the empirical data on skin cancer incidence

> Assess separately for melanoma and NMSC due to data availability issues.

> Melanoma -
 - Case numbers by age and gender from 1982 to 2004 from three states, i.e. Vic, NSW and Qld
 - representative for three latitude zones of different ambient UVR exposures (risk factor of skin cancer)

> NMSC –
 - national survey results
Assessing Program Effectiveness (III)

> Age-specific incidence rates are calculated for these three zones.
> Compare the melanoma incidence rates pre and post the program
> Projected incidence based on the trend of pre-SunSmart from 1982 to 1987 was assumed to be the melanoma incidence without SunSmart
> Effectiveness expressed as rate ratio (RR) of observed over projected incidence
Assessing Program Effectiveness (IV)

> Incidence reduction in Victoria less than the other two states
> Due to lower UVR level??
> Adjust for the ‘Slip, Slop, Slap’ effect,
 ▪ assume that the trend in melanoma incidence (slope of increase) in NSW/Qld is indicative of the trend in Victoria if they had not had this campaign.
 ▪ Adjusted rate ratios of observed to the expected incidence are then calculated for Victoria
 ▪ May over-estimate the effectiveness if the lower UVR level in Vic plays a role.
Assessing Program Effectiveness (V)

- More realistic illustration of the past SunSmart in Victoria over “do nothing”
- Enabled the comparison between optimal SunSmart state (Victoria) and under-invested SunSmart state (NSW/QLD) over the period 1988 to 2003
- Incremental effectiveness of the Victorian program compared to NSW/Qld, provides a realistic (albeit conservative) estimate of the incremental benefit that a sustained investment in SunSmart in the future could achieve compared to current practice

Rate ratio (RR) of observed over predicted melanoma incidence, male

![Graph showing rate ratio (RR) of observed over predicted melanoma incidence, male from 1988 to 2004. The graph compares Victoria (VIC) and NSW/QLD, with Victoria consistently showing a lower rate ratio.]
Assessing Program Effectiveness (VI)

> NMSC

- Not routinely collected by Cancer Registries
- NMSC incidence has been estimated from a population survey every 5 to 7 years since 1985
- Staples (1998) reported the incidence of BCC has fallen in the younger age groups less than 50 years old
- Appears to be no impact on SCC
Modeling to health outcomes

> Assumption –
 - the reduction in melanoma incidence that has occurred in the past in Victoria could be re-produced by the optimal SunSmart program for Australia as a whole in the next 20 years

> Outcomes –
 - Incidence reduction
 - Death averted
 - Life Years Saved (LYS)
 - Disability Adjusted Life Years (DALY): health loss due to
 - mortality component (HALY)
 - morbidity component (YLD)
 - using the Australian Burden of Disease (BoD) results
Cost of intervention and potential offsets

> For the past –
 ▪ Actual expenditures spent
> For the future –
 ▪ Intervention: $0.28 per capita, historical average of the Vic SunSmart expenditure
 ▪ Comparator: $0.07 per capita, average level of investment in NSW/Qld over the last decade (1998-2006),
> Cost offsets refers to the savings in the costs of management and treatment for skin cancer
 ▪ Melanoma: $3341 per case
 ▪ NMSC: $700 per case (2001 value, AIHW 2005)
> Cost to individuals: $3 per capita per year
> Reference year: 2003
> All costs and outcomes are discounted at 3% p.a.
Sensitivity/Uncertainty Analyses

> Main source of the uncertainty would be around the assumptions we make for assessing the effectiveness

> One-way sensitivity analysis on

 - Program effectiveness on melanoma: 50% and 100%.
 - Discount rate, where the base rate of 3% is varied to 0%, 5%, 7%.
 - Decay rate of program effectiveness on NMSC: 0%, 10%, 20% per annum.

> Threshold analysis to determine the proportion of health gain that would need to be attributed to SunSmart for the program to no longer be dominant or reach a threshold

> Multiple-probabilistic uncertainty analysis around costs using @Risk software

Uncertainty analysis parameters and distribution

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Base case value (range)</th>
<th>Distribution</th>
</tr>
</thead>
<tbody>
<tr>
<td>Program cost of intervention</td>
<td>$0.28 per capita (0.28 – 0.55)</td>
<td>Triangular</td>
</tr>
<tr>
<td>Program cost of comparator</td>
<td>$0.07 per capita (0.07-0.14)</td>
<td>Triangular</td>
</tr>
<tr>
<td>Cost offset of Melanoma</td>
<td>$3747 per case (+/-10%)</td>
<td>Uniform</td>
</tr>
<tr>
<td>Cost offset of NMSC</td>
<td>$785 per case (+/-10%)</td>
<td>Uniform</td>
</tr>
</tbody>
</table>
Results (I): past

> The past SunSmart program in Victoria since it was introduced in 1988 to 2003 achieves dominance: achieves health gains and saves money, from the Government perspective.

> Excluding cost-offset:
 - $680 per LYS
 - $540 per DALY averted
Results (II): future

The median value and 95% uncertainty interval of ICER results in the base case analysis (d=3%) for both perspectives.

<table>
<thead>
<tr>
<th>Health gains</th>
<th>Government Perspective</th>
<th>Health Sector Perspective</th>
</tr>
</thead>
<tbody>
<tr>
<td>Incidence case prevented</td>
<td>median value (95% UI)</td>
<td>median value (95% UI)</td>
</tr>
<tr>
<td>Life years saved (LYS)</td>
<td>191,000</td>
<td>191,000</td>
</tr>
<tr>
<td>DALYs averted</td>
<td>91,000</td>
<td>91,000</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Incremental cost</th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Incremental net costs</td>
<td>$-180m ($-220m, $-120m)</td>
<td>$770m ($730m, $830m)</td>
</tr>
<tr>
<td>Incremental program cost</td>
<td>$85m ($57m,$140m)</td>
<td>$1,000m ($1,000m, $1,100m)</td>
</tr>
<tr>
<td>Incremental cost offsets</td>
<td>$270m ($240m, $290m)</td>
<td>$270m ($240m, $290m)</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>ICER per LYS</th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>ICER (with cost-offset)</td>
<td>dominant</td>
<td>$8,500 ($8,000, $9,100)</td>
</tr>
<tr>
<td>ICER (without cost-offset)</td>
<td>$940($610,$1500)</td>
<td>$11,400 ($11,100, $12,000)</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>ICER per DALY averted</th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>ICER (with cost-offset)</td>
<td>dominant</td>
<td>$6,349 ($5,971, $6,821)</td>
</tr>
<tr>
<td>ICER (without cost-offset)</td>
<td>$700 ($470,$1100)</td>
<td>$8,500 ($8,300, $8,900)</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Investment return</th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Program cost</td>
<td>$115m ($90m, $160m)</td>
<td>$1,070m ($1,040m, $1,120m)</td>
</tr>
<tr>
<td>Investment return for every dollar invested by government</td>
<td>$2.30 ($1.60, $3.00)</td>
<td></td>
</tr>
</tbody>
</table>
Results (III): Sensitivity Analysis

> From Government perspective, all ICER of the sensitivity result are dominant with cost-offsets

> Worse case scenario where we assume the future national SunSmart:
 - only achieves 50% of the effectiveness in melanoma incidence reduction
 - with double the program cost as the past SunSmart in Victoria
 - together with a greater decay rate of 20% in the ability of the program to reduce the rate of NMSC
 - ICER: 129/DALY averted with cost-offsets

> Threshold analysis
 - <2% of the reduction attributed to SunSmart in order for dominance to be maintained (Govt perspective, including cost-offsets)
 - 17% of the reduction attributed to SunSmart for ICER< 50,000/DALY (health sector perspective, including cost-offsets)
Results (IV): Acceptability Curve

Acceptability curve of 2000 iterations uncertainty analysis for ICER with cost-offsets from the health sector perspective.
Discussion

- Provide evidence to support a recommendation for a national comprehensive SunSmart program.
- Results are similar in nature and magnitude to the previous Australian work evaluating the cost-effectiveness of SunSmart (Carter, Marks et al. 1999).
- Quality of evidence is not perfect but it is considered the best we could obtain - threshold analysis
- Allocative efficiency vs. Technical efficiency
- Unnecessary cost in removal and biopsy of non-malignant skin moles is not modelled
- Future SunSmart will need to manage a more complex message in which the risks of skin cancer are balanced alongside the necessary levels of sunlight in relation to Vitamin D deficiency