This is the published version:

Available from Deakin Research Online:

http://hdl.handle.net/10536/DRO/DU:30028313

Every reasonable effort has been made to ensure that permission has been obtained for items included in Deakin Research Online. If you believe that your rights have been infringed by this repository, please contact drosupport@deakin.edu.au

Copyright: 2009, Universitat de les Illes Balears
On migrative means and copulas

Tomasa Calvo
Depto. de Ciencias de la Computación,
Universidad de Alcalá
email: tomasa.calvo@uah.es

Gleb Beliakov
School of Information Technology,
Deakin University
email: gleb@deakin.edu.au

Summary

In this short work we extend the results of J.Fodor and I.J. Rudas [6] characterizing migrative triangular norms, to quasi-arithmetic means. We use idempotisation construction to obtain quasi-arithmetic means migrative with respect to fixed parameter α. We also obtain the necessary and sufficient condition for a migrative triangular norm to be a copula.

Keywords: Aggregation operators, migrative property, triangular norms, quasi-arithmetic means, copulas.

1 INTRODUCTION

Recently in [6] Fodor and Rudas provided a construction of α-migrative continuous triangular norms based on their additive generators. A binary operation T is called α-migrative if $T(\alpha x, y) = T(x, \alpha y)$ for a fixed $\alpha \in [0, 1]$ and for all $x, y \in [0, 1]$. This property was considered for the first time in [10]. However, observe that the term α-migrative was introduced by several authors [5] (this work was submitted for publication in 2006).

Further, in [3] Bustince, Mesiar and Montero investigated many classes of aggregation functions and identified those that are migrative for all $\alpha > 0$ (we shall call them simply migrative). In this note we apply the construction in [6] and the method of idempotisation (see, e.g., [4]) to obtain quasi-arithmetic means that are α-migrative for a fixed α, as well as discuss α-migrative copulas.

We consider this property when we want a global evaluation of two individual inputs to be invariant when we increase one input by a factor $k = 1/\alpha$ and at the same time decrease the other input by the same factor, i.e., $T(u, v) = T(u/\alpha, \alpha v)$ for all $u, v \in [0, 1]$ or equivalently $T(\alpha x, y) = T(x, \alpha y)$ where $u = \alpha x$ and $v = y$.

We recall the main results from [6] and [3]. Firstly, a continuous α-migrative aggregation function A has 0 as the absorbing element (annihilator) $A(x, 0) = A(0, x) = 0$ for all $x \in [0, 1]$. A migrative aggregation function needs to be symmetric. A continuous α-migrative t-norm must be strict. The only continuous migrative t-norm is the product, and the only migrative quasi-arithmetic mean is the geometric mean. There are no migrative t-conorms, uninorms or nullnorms. In [3] the authors establish that to be migrative, an aggregation function must satisfy $A(x, y) = g(xy)$ for some monotone increasing univariate function g.

2 IDEMPOTISATION METHOD

It is well-known that for any binary aggregation function A and any strictly increasing bijection $\phi : [0, 1] \rightarrow [0, 1]$, is possible to define a new binary aggregation function (by transformation) $A_{\phi} = \phi \circ A$; it is called the ϕ-transform of A. A special class of binary aggregation functions are the t-norms (see [7, 8]). In this case, we can consider the inverse of the diagonal of a t-norm $(\delta(x) = T(x, x))$ to define the ϕ-transform of this t-norm, i.e., $T_{\phi} = \delta^{-1} \circ T$, provided δ^{-1} exists. It is easy to see that the new aggregation function T_{ϕ} is idempotent.

An illustrative example is the product t-norm $T(x, y) = xy$ and the geometric mean $G(x, y) = \sqrt{xy}$, with $\phi(x) = \sqrt{x}$.

We will be dealing with strict t-norms, which means that they are also Archimedean. Such t-norms have additive generators, strictly decreasing continuous functions $g : [0, 1] \rightarrow [0, \infty]$ with $g(1) = 1, g(0) = \infty$.

which are related to T in

$$T(x, y) = g^{-1}(g(x) + g(y)).$$

Idempotisation method applies to strict t-norms. Furthermore, it is not difficult to show that in this case T_ϕ is a quasi-arithmetic mean with the same generating function as the additive generator of T (up to a linear transformation).

Proposition 1 Let T be a strict t-norm, let g be its additive generator, and $\phi = \delta^{-1}$, the inverse of the diagonal of T. Then T_ϕ is a quasi-arithmetic mean, with a generating function $h(x) = ag(x) + b$ for some $a, b \in \mathbb{R}$, i.e., $T_\phi(x, y) = h^{-1}\left(\frac{h(x) + h(y)}{2}\right)$.

Proof. Recall that if M_1 and M_2 are quasi-arithmetic means with generating functions g_1 and g_2 respectively, then $M_1 = M_2$ iff $g_1(x) + b$ for some $a, b \in \mathbb{R}$.

From $\delta(x) = T(x, x)$ we get $\delta^{-1}(x) = g^{-1}\left(\frac{2(x)}{2}\right)$. Furthermore, we have $\phi(T(x, y)) = \delta^{-1}(T(x, y)) = g^{-1}\left(\frac{g(x) + g(y)}{2}\right)$, for all $x, y \in [0, 1]$.

Now, if $\phi \circ T$ defines a quasi-arithmetic mean, with a generating function h, the following functional equation holds

$$g^{-1}\left(\frac{g(x) + g(y)}{2}\right) = h^{-1}\left(\frac{h(x) + h(y)}{2}\right),$$

or equivalently

$$h \circ g^{-1}\left(\frac{u + v}{2}\right) = \frac{h \circ g^{-1}(u) + h \circ g^{-1}(v)}{2},$$

for all $u, v \in [0, \infty]$. This is the Jensen’s functional equation and its solution is given by $h \circ g^{-1}(u) = a \cdot u + b$ for some $a, b \in \mathbb{R}$. Therefore, $h(x) = ag(x) + b$ for all $x \in [0, 1]$. □

Since the product is the only continuous migrative t-norm, then we have

Corollary 1 The only migrative quasi-arithmetic mean is the geometric mean.

Next, let us apply the construction method in [6] for α-migrative continuous t-norms. Let $\alpha \in [0, 1]$ be fixed and let $t_0 : [\alpha, 1] \rightarrow [0, 1]$ be a strictly decreasing continuous function, $t_0(1) = 0$. The function g is an additive generator of a continuous migrative t-norm iff it is given by

$$g(x) = kt_0(\alpha) + t_0\left(\frac{x}{\alpha^k}\right), \text{ if } x \in [\alpha^{k+1}, \alpha^k],$$

where k is any non-negative integer.

Note that (1) can be rewritten in recursive form as follows. Let $g_0(x) = t_0(x), x \in [\alpha, 1]$. Then $g_1(x) = g_0(\alpha) + g_0\left(\frac{x}{\alpha}\right), x \in [\alpha^2, \alpha^1], and$

$$g_{k+1}(x) = g_k(\alpha) + g_k\left(\frac{x}{\alpha}\right), x \in [\alpha^{k+1}, \alpha^k], k = 2, 3, \ldots. \tag{2}$$

Corollary 2 A quasi-arithmetic mean is α-migrative iff one of its generating functions is given in (1).

3 MIGRATIVE COPULAS

It is known that Archimedean copulas are characterized by the convexity of their additive generators [9], see also general references [1, 2, 8]. Let us establish under which conditions an α-migrative t-norm T is a copula. Of course, T has to be continuous, hence we apply construction (1).

Theorem 1 The necessary and sufficient condition for an α-migrative t-norm T to be a copula is that its additive generator g be given in (1) with t_0 convex on $[\alpha, 1]$ and satisfying

$$\frac{1}{\alpha} t'_0(1) \leq t'_0(\alpha). \tag{3}$$

Proof. For g in (1) to be convex, obviously t_0 must be convex on $[\alpha, 1]$. A continuous convex function on a compact set is differentiable almost everywhere. Consider left and right derivatives of g at α (which must exist, as $\alpha \in [0, 1] = Dom(g)$). For g to be convex we need $\frac{1}{\alpha} t'_0(1) = g'_0(\alpha) \leq g'_0(\alpha) = t'_0(\alpha)$. For the remaining values $x = \alpha^k, k = 2, 3, \ldots$ we have exactly the same condition of convexity, namely $\frac{1}{\alpha} g'_k(\alpha^k) \leq g_{k+1}'(\alpha^{k+1})$, as can be clearly seen from the recursive form (2), and the above condition follows from (3). □

Consider now piecewise continuous twice differentiable additive generators g in (1), for which we have the following sufficient condition.

Corollary 3 A sufficient condition for an α-migrative t-norm T to be a copula is that its additive generator g be given in (1) and t_0 satisfy

$$0 \leq t'_0 \leq \frac{t_0'(1)}{\alpha}. \tag{4}$$

Proof. Denote by $f = g'$ (or its left or right derivative at 1 and α respectively). Then we need the condition $f(1) \leq f(\alpha)$. 108
Since f is differentiable on $[\alpha, 1]$, $f(\alpha) \geq f(1) - (1 - \alpha)\sup f'(x)$. Then
\[
f(\alpha) \geq f(1) - \frac{f(1)}{\alpha} + \frac{f(1)}{\alpha} - (1 - \alpha)\sup f'(x) = f(1)\frac{\alpha - 1}{\alpha} - (1 - \alpha)\sup f'(x) + \frac{f(1)}{\alpha}.
\]
Then for condition $\frac{f(1)}{\alpha} \leq f(\alpha)$ to hold we need
\[
f(1)\frac{\alpha - 1}{\alpha} - (1 - \alpha)\sup f'(x) \geq 0
\]
or equivalently,
\[
\sup f'(x) \leq -\frac{f(1)}{\alpha}.
\]
\[\square\]

Example 1 Let $t_0(x) = 1 - x$. Then g is a continuous piecewise linear function (for any $\alpha \in [0, 1]$), with infinitely many linear pieces joined at $\alpha^k, k = 1, 2 \ldots$. Since $t_0 = 0$, g is convex by Corollary 3.

Example 2 Let $t_0(x) = x^p - 1, p < 0$. By using Theorem 1, we need to establish
\[
\frac{1}{\alpha}p\lambda^{p-1} \leq p\alpha^{p-1},
\]
or, equivalently,
\[
\alpha^p \leq 1,
\]
which is certainly false for $\alpha \in [0, 1]$, hence migrative t-norms in this example are not copulas.

Example 3 Let $t_0(x) = \log(2 - x^\lambda), 0 < \lambda \leq \frac{1}{2}$. By using Theorem 1, we need to establish
\[
-\frac{\lambda}{\alpha} \leq -\frac{\lambda \cdot \alpha^{\lambda-1}}{2 - \alpha^{\lambda}},
\]
or, equivalently,
\[
\alpha^\lambda \leq 1,
\]
which is true for $\alpha \in [0, 1]$ and $0 < \lambda \leq \frac{1}{2}$. The migrative t-norm defined by this generator is a copula for $0 < \lambda \leq \frac{1}{2}$ and any $\alpha \in [0, 1]$.

Example 4 Let $t_0(x) = (1 - \log x)^\lambda - 1$, with $\lambda \in [0, \infty]$. Applying Theorem 1 again, we need to prove that
\[
(1 - \log \alpha)^\lambda - 1 \leq 1,
\]
which is true for $\lambda \leq 1$. The α-migrative t-norm defined by this generator is a copula for $0 < \lambda \leq 1$ and any $\alpha \in [0, 1]$.

4 Conclusion

We extended the results of Fodor and Rudas [6] on the characterization of α-migrative t-norms to quasi-arithmetic means. In various applications averaging behavior is important, and the described idempotization construction allows one to use the same additive generator as in [6]. Further, we provided verifiable sufficient conditions characterizing α-migrative Archimedean copulas, which is an important class of functions with many applications.

ACKNOWLEDGEMENTS

This work was supported by the projects MTM2006-08322 and PR2007-0193 from Ministerio de Educación y Ciencia, Spain.

References