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Abstract
This article discusses Lipschitz properties of generated aggrega-

tion functions. Such generated functions include triangular norms
and conorms, quasi-arithmetic means, uninorms, nullnorms and con-
tinuous generated functions with a neutral element. The Lipschitz
property guarantees stability of aggregation operations with respect
to input inaccuracies, and is important for applications. We pro-
vide verifiable sufficient conditions to determine when a generated
aggregation function holds the k-Lipschitz property, and calculate the
Lipschitz constants of power means. We also establish sufficient con-
ditions which guarantee that a generated aggregation function is not
Lipschitz. We found the only 1-Lipschitz generated function with a
neutral element e ∈]0, 1[.

Keywords Aggregation functions, generated aggregation functions, k-Lipschitz
aggregation functions, triangular norms, quasi-arithmetic means, uninorms, null-
norms, stability.

1 Introduction

Aggregation of several input values into a single output value is an indispens-
able tool in many disciplines and applications such as decision making [22],
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pattern recognition, expert and decision support systems, information re-
trieval, etc [6]. There is a wide range of aggregation functions which pro-
vide flexibility to the modeling process, including weighted quasi-arithmetic
means, ordered weighted averaging functions, Choquet and Sugeno inte-
grals, triangular norms and conorms, uninorms, nullnorms, and many oth-
ers. There are several recent books that provide details of many aggregation
methods [1, 2, 4, 8, 20].

For applications it is important to design aggregation functions that are
stable with respect to small perturbations of inputs (e.g., due to input in-
accuracies). Such aggregation functions need not only be continuous, but
also Lipschitz continuous [5]. Two classes, kernel and 1-Lipschitz aggrega-
tion functions, have been studied in [7, 9, 10]. It is known, for instance, that
1-Lipschitz triangular norms are copulas [1,8,18]. More recently, k-Lipschitz
t-norms and t-conorms were studied [15–17]. These functions have the Lips-
chitz constant k in 1-norm (see below). k-Lipschitz t-norms do not increase
the perturbation of inputs due to inaccuracies by more than a factor of k,
which is suitable for many applications.

Many aggregation functions are constructed with the help of univari-
ate generating functions, called additive generators. Notable examples are
Archimedean triangular norms and conorms, as well as representable uni-
norms. In this article we examine such generated functions and establish
conditions on their generators which guarantee that their Lipschitz constant
is not greater than k. We also establish conditions under which generated
functions are not Lipschitz.

The structure of this paper is as follows. In Section 2 we recall basic
notions and the main classes of aggregation functions. We recall the results
concerning k-Lipschitz triangular norms and conorms in Section 3. Section
4 contains our main results concerning quasi-arithmetic means. Section 5
deals with continuous generated functions with a neutral element. We finish
the paper with conclusions.

2 Preliminaries

We restrict ourselves to aggregation functions defined on [0, 1]n. A number
or a letter in boldface will denote a vector in [0, 1]n.
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Definition 1 (Aggregation function) A function f : [0, 1]n → [0, 1] is
called an aggregation function if it is monotone non-decreasing in each vari-
able and satisfies f(0, 0, . . . , 0) = 0, f(1, 1, . . . , 1) = 1.

Well known classes of aggregation functions and their properties are dis-
cussed in detail in the books [1, 2, 4, 8, 20]. We will concentrate on continu-
ous Archimedean triangular norms and conorms (t–norms and t–conorms),
quasi-arithmetic means and generated aggregation functions with a neutral
element. We recall that the dual of a t-norm is a t-conorm, and vice versa,
and that the classes of uninorms, nullnorms and quasi-arithmetic means are
closed under duality. We recall the following representation theorem.

Theorem 1 [12] Any continuous Archimedean t-norm T admits the follow-
ing representation

T (x, y) = t(−1)(t(x) + t(y)),

for all x, y ∈ [0, 1] where t : [0, 1] → [0,∞] with t(1) = 0 is a continuous,
strictly decreasing function and t(−1) is the pseudo inverse of t,

t(−1)(x) =

{
t−1(x), if 0 ≤ x < t(0),
0, if t(0) ≤ x ≤ +∞

The function t is called an additive generator of T . Strict t-norms are
characterized by additive generators satisfying t(0) = ∞, whereas additive
generators of nilpotent t-norms satisfy t(0) < ∞. The following construc-
tion provides a general class of aggregation functions built by using additive
generators.

Definition 2 (Generated function) Let g1, . . . , gn : [0, 1] → [−∞, +∞]
be a family of continuous non-decreasing functions and let h :

∑n
i=1 Ran(gi) →

[0, 1] be a continuous non-decreasing surjection1. The function f : [0, 1]n →
[0, 1] given by

f(x1, . . . , xn) = h (g1(x1) + . . . + gn(xn))

is called a generated function, and ({gi}i∈{1,...,n}, h) is called a generating
system.

1That is, Ran(h) = [0, 1].
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The monotonicity of functions that form the generating system, along
with the fact that h is surjective, ensure that every generated function is an
aggregation function. Some properties of generated functions were studied
in [11], among which we note the following: generated functions such that
Dom(h) 6= [−∞, +∞] are always continuous on the whole domain. However
the condition Dom(h) = [−∞, +∞] by itself does not necessarily entail lack
of continuity.

We concentrate on the case where g1 = g2 = . . . = gn = g and h = g−1

(or h = g(−1) if required), and later on extend it to gi(x) = wig(x), wi ≥
0,

∑
wi = 1.

Let g : [0, 1] → [−∞,∞] be a continuous strictly monotone function,
called a generating function or generator. Of course, g is invertible, but it
is not necessarily a bijection (its range may be Ran(g) ⊂ [−∞,∞]). The
examples of generated functions are continuous Archimedean t-norms and
t-conorms, and representable uninorms. With respect to uninorms, we re-
call that a) representable uninorms are almost continuous (i.e., continuous
on [0, 1]2\{(0, 1), (1, 0)}), and b) the underlying t-norm and t-conorm of a
representable uninorm are necessarily strict.

In this paper our main focus is on the following two classes of generated
aggregation functions.

Definition 3 (Weighted quasi-arithmetic mean) For a given generat-
ing function g, and a weighting vector w, such that wi ≥ 0,

∑
wi = 1, the

weighted quasi-arithmetic mean is the function

Mw,g(x1, . . . , xn) = g−1

(
n∑

i=1

wig(xi)

)
. (1)

When all the weights are equal (wi = 1
n
), we call this function simply

a quasi-arithmetic mean and denote it by Mg. Quasi-arithmetic means do
not have a neutral element, and they can have an absorbing element when
g(0) = ±∞ or g(1) = ±∞. When g(x) = xp, p 6= 0, the quasi-arithmetic
mean is called the power mean and is denoted by M[p]. The limiting cases
p → −∞, p →∞ and p → 0 correspond to the minimum, maximum and the
geometric mean respectively.

Definition 4 (Generated aggregation functions with neutral element)
A function f : [0, 1]n → [0, 1] defined by

f(x1, . . . , xn) = g(−1) (g(x1) + . . . + g(xn)) (2)

4



with g : [0, 1] → [−∞, +∞] a continuous strictly increasing function such
that g(e) = 0, g(−1) its pseudo-inverse,

g(−1)(x) = g−1(min(g(1), max(g(0), x))).

and Ran(g) ( [−∞+∞], is called a continuous generated function with the
neutral element e [13,14].

Now, we consider the central concept of this work:

Definition 5 (Lipschitz continuity) An aggregation function f is called
Lipschitz continuous if there is a positive number k, such that for any two
vectors x,y in the domain of definition of f :

|f(x)− f(y)| ≤ kd(x,y), (3)

where d(x,y) is a distance between x and y. The smallest such number k is
called the Lipschitz constant of f (in the distance d).

Typically the distance is chosen as a p-norm d(x,y) = ||x − y||p, with

||x||p =

(
n∑

i=1

|xi|p
)1/p

, for finite p, and ||x||∞ = max
i=1,...,n

|xi|.

Definition 6 (Locally Lipschitz functions) A function f is called locally
Lipschitz continuous on Ω if for every x ∈ Ω there exists a neighborhood D(x)
such that f restricted to D(x) is Lipschitz.

Definition 7 (k–Lipschitz aggregation functions) An aggregation func-
tion f is called k-Lipschitz if for all x,y ∈ [0, 1]n the following holds

|f(x)− f(y)| ≤ k||x− y||1.
Of course, duality w.r.t. standard negation preserves the Lipschitz prop-

erty (and the Lipschitz constant). It is easy to see that if an aggregation
function f is k–Lipschitz, it is also m–Lipschitz for any m ≥ k. Also any con-
vex combination of k−Lipschitz aggregation functions f = αf1+βf2, α+β =
1, α, β ≥ 0, is k−Lipschitz. If f is continuously differentiable, the Lipschitz
constant k in 1-norm is simply the least upper bound on the partial deriva-
tives of f . For example, if f is a product, then ∂f

∂xi
= x1 . . . xi−1xi+1 . . . xn,

and the maximum of this expression is reached at 1, hence the product is
1-Lipschitz. We also remind that for univariate functions, the Lipschitz con-
dition implies differentiability almost everywhere, which implies the existence
of left- and right- derivatives. The supremum of the left- and right-derivatives
is then the Lipschitz constant.

5



3 k-Lipschitz triangular norms

The class of k–Lipschitz t–norms, whenever k > 1, has been characterized in
[15]. 1–Lipschitz t–norms are copulas, see [1, 2, 8]. 1–Lipschitz Archimedean
t–norms are characterized by convex additive generators g.

The k–Lipschitz property implies continuity of the t–norm. Characteriza-
tion of all k–Lipschitz t–norms is reduced to the problem of characterization
of all Archimedean k–Lipschitz t–norms.

Definition 8 (k–convex function) Let g : [0, 1] → [0,∞] be a strictly
monotone function and let k ∈]0,∞[ be a real constant. Then g will be
called k–convex if

g(x + kε)− g(x) ≤ g(y + ε)− g(y)

holds for all x ∈ [0, 1[, y ∈]0, 1[, with x ≤ y and ε ∈]0, min(1− y, 1−x
k

)].

Obviously, if k = 1, the function g is convex. Observe that, if a strictly
monotone function is k–convex then it is also a continuous function on ]0, 1[.
A decreasing function g can be k–convex only for k ≥ 1. Moreover, when a
decreasing function g is k–convex, it is also m–convex for all m ≥ k. In the
case of a strictly increasing function g?, it can be k-convex only for k ≤ 1.
Moreover, when g? is k–convex, it is m–convex for all m ≤ k.

Considering k ≥ 1 and a strictly decreasing function g, we provide the
following characterization given in [15].

Proposition 1 Let T : [0, 1]2 → [0, 1] be a continuous Archimedean t–norm
and let g : [0, 1] → [0,∞], g(1) = 0 be an additive generator of T . Then T is
k–Lipschitz if and only if g is k–convex.

Corollary 1 [19] Let g : [0, 1] → [0,∞] be an additive generator of a t–
norm T which is differentiable on ]0, 1[ and let g′(x) < 0 for 0 < x < 1.
Then T is k–Lipschitz if and only if g′(y) ≥ kg′(x) whenever 0 < x < y < 1.

Corollary 2 [15] Let T : [0, 1]2 → [0, 1] be an Archimedean t–norm and let
g : [0, 1] → [0,∞] be an additive generator of T such that g is differentiable
on ]0, 1[\S, where S ⊂ [0, 1] is a discrete set. Then T is k–Lipschitz if and
only if kg′(x) ≤ g′(y) for all x, y ∈ [0, 1], x ≤ y such that g′(x) and g′(y)
exist.
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The following useful results follow from Corollary 1. They help to deter-
mine whether a given piecewise differentiable t–norm is k–Lipschitz.

Corollary 3 Let T : [0, 1]2 → [0, 1] be an Archimedean t–norm and let g :
[0, 1] → [0,∞] be its additive generator differentiable on ]0, 1[, and g′(t) < 0
on ]0, 1[. If

inf
t∈]x,1[

g′(t) ≥ k sup
t∈]0,x[

g′(t)

holds for every x ∈]0, 1[ then T is k–Lipschitz.

Corollary 4 Let g : [0, 1] → [0,∞] be a strictly decreasing function, differ-
entiable on ]0, a[∪]a, 1[. If g is k-convex on [0, a[ and on ]a, 1], and if

inf
t∈]a,1[

g′(t) ≥ k sup
t∈]0,a[

g′(t),

then g is k–convex on [0, 1].

Consider two related classes of aggregation functions.

Remark 1 Clearly, generated uninorms are not k-Lipschitz, since they are
discontinuous at (0, 1) and (1, 0) (in the bivariate case).

Remark 2 Nullnorms are not generated functions, nevertheless they are
closely related to t-norms and t-conorms. Recall that the values of a null-
norm V coincide with those of a (scaled) t-conorm S on [0, a]2, with values
of a (scaled) t-norm T on [a, 1]2, and are constant V (x, y) = a elsewhere,
where a is the absorbing element. Thus, each nullnorm univocally defines a
t-norm and a t-conorm and vice versa.

Then it is clear that a nullnorm V is k-Lipschitz if and only if the un-
derlying t-norm and t-conorm TV and SV are k-Lipschitz. The Lipschitz
constant of V is the maximum of the Lipschitz constants of TV and SV .

4 Quasi-arithmetic means

Quasi-arithmetic means, given in Definition 3, are a class of generated aggre-
gation functions. We start with bivariate quasi-arithmetic means. We recall
that quasi-arithmetic means are continuous if and only if Ran(g) 6= [−∞,∞]
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[11], and that their generators are not defined uniquely, i.e., if g(t) is a gen-
erating function of some weighted quasi-arithmetic mean, then ag(t) + b,
a, b ∈ <, a 6= 0 is also a generating function of the same mean provided
Ran(g) 6= [−∞,∞]. For example, g1(t) = tp and g2(t) = −tp + 1 gener-
ate the same power mean M[p]. For this reason, one can assume that g is
monotone increasing, as otherwise we can simply take −g.

We shall consider two cases: I) g(0) = 0, g(1) = 1, and II) g(0) =
−∞, g(1) = Const < ∞. Of course, by duality we also cover the case
g(1) = ∞, g(0) > −∞, and by using appropriate linear transformations, all
generators can be reduced to the mentioned cases.

Remark 3 As opposed to the case of convex additive generators of t-norms,
where the resulting t-norms are 1-Lipschitz, convexity of the generator g does
not play any role by itself for quasi-arithmetic means. Since both g and
−g are generators of the same mean, and obviously when g is convex −g
is concave, convexity of g by itself does not lead to the Lipschitz condition.
Also note that g(x) = − ln(x) is a convex generator of the geometric mean
G(x, y) =

√
xy, which is not Lipschitz.

Further, even if g is convex and increasing, or convex and decreasing, this
does not imply the Lipschitz condition either: note that gd(x) = 1− g(1− x)
is a generator of a quasi-arithmetic mean dual to the one generated by g,
and that the Lipschitz condition is preserved under duality. If g is convex
increasing, then gd is convex decreasing and vice versa. Thus a different
condition guaranteeing Lipschitz properties is needed.

4.1 Case of finite generators

We start with the case I) of g finite. We show that Mg is k−Lipschitz
=⇒ g is Lipschitz =⇒ g has left- and right-derivatives on [0, 1]. Then
characterization of k−Lipschitz quasi-arithmetic means is expressed as (5)
below for smooth generators, and as (6) for non-smooth generators.

First, let us show that g must be Lipschitz on [0,1].

Lemma 1 Let g be finite, continuously differentiable and locally Lipschitz
except at a point a ∈ [0, 1]. Then Mg is not k-Lipschitz for any k.

Proof. Suppose that Mg is k-Lipschitz, which means it is differentiable
almost everywhere in its domain (Rademacher’s theorem, e.g., [21]), and we
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must have
∂Mg

∂x
(x, y) ≤ k, x, y 6= a

whenever such a derivative exists, and similarly for the other partial deriva-
tive. Since Mg is symmetric, only the derivative with respect to x is needed.

∂Mg

∂x
=

1

g′ (Mg(x, y)))
.

1

2
g′(x) ≤ k.

Since g is strictly increasing we must have

1

2
g′(x) ≤ kg′(Mg(x, y)) for all x, y ∈ [0, 1], x, y 6= a,Mg(x, y) 6= a or

1

2
g′(x) ≤ k · inf

y∈[0,1]
g′(Mg(x, y)), x 6= a. (4)

Since g is finite, Mg does not have an absorbing element. Let lim
x→a

g′(x) =
∞.

∃y 6= a : z = Mg(a, y) 6= a such that g′(z) ≤ N < ∞ (because g is
locally Lipschitz). Then inequality (4) fails, because we can always choose
such x 6= a, that g′(x) > 2kN , which would give us

kN <
1

2
g′(x) ≤ kg′(z) ≤ kN,

which is false. Then ∂Mg

∂x
> k, hence Mg is not Lipschitz. ¤

Theorem 2 Let Mg be a quasi-arithmetic mean with a finite increasing gen-
erator g. The necessary and sufficient conditions for Mg to be k-Lipschitz
are:

• If g is continuously differentiable, for all x ∈ [0, 1]:

1

2
g′(x) ≤ k · min

y∈[0,1]
g′(Mg(x, y)) (5)

• If g is not differentiable, using left- and right- derivatives g′−, g′+:

1

2
g′−(x) ≤ k inf

z∈[M(x,0),M(x,1)]
g′−(z) (6)

1

2
g′+(x) ≤ k inf

z∈[M(x,0),M(x,1)]
g′+(z)

for all x ∈]0, 1[, and only one of the above inequalities for x = 0 and
x = 1.
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Proof. By Lemma 1, g must be locally Lipschitz on [0, 1] (and hence Lips-
chitz; g needs not be continuously differentiable). It follows that g is differ-
entiable almost everywhere, which means that the left- and right-derivatives
exist in [0, 1]. We start with the case of g differentiable on [0, 1]. Let Mg be
k-Lipschitz. Then partial derivatives of Mg exist and we must have

∂Mg

∂x
(x, y) ≤ k.

Following the same procedure as in Lemma 1,

∂Mg

∂x
=

1

g′ (Mg(x, y)))
.

1

2
g′(x) ≤ k,

from which we obtain condition (5). If g is not differentiable, then we adapt
(5) by using left- and right-derivatives.

Sufficiency is straightforward, because the bounds on the partial deriva-
tives of Mg (resp. left- and right- partial derivatives) on the whole domain
imply k-Lipschitz. ¤

Remark 1 If g is finite and concave increasing, then it is sufficient to check

1

2
g′(x) ≤ kg′(M(x, 1)) = k(g′ ◦ g−1)

(
g(x)

2
+

1

2

)
,

(and similarly for left- and right-derivatives if g is not smooth). If g is finite
and convex increasing, it is sufficient to check

1

2
g′(x) ≤ kg′(M(x, 0)) = k(g′ ◦ g−1)

(
g(x)

2

)
.

Let us provide some examples of Lipschitz and non-Lipschitz quasi-arithmetic
means.

Example 1 If g is linear (Mg is the arithmetic mean), g′(x) = const, and
Mg is k-Lipschitz for k = 1

2
.

Example 2 If g(x) = xp, p > 1 (Mg is a power mean M[p]), g′(x) = pxp−1,

and Mg is k-Lipschitz for k =
(

1
2

) 1
p . It follows from

1

2
pxp−1 ≤ kp

(
xp

2

) p−1
p

= kpxp−1

(
1

2

) p−1
p

.

Example 3 If g(x) = xp, 0 < p < 1, M[p] is not Lipschitz by Lemma 1.
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4.2 Case of infinite generators

Now we turn to case II), g(0) = −∞, which entails that 0 is the absorbing
element of Mg. We have an analogue of Lemma 1. The proof is similar,
except that it fails for a = 0, hence the modification.

Lemma 2 Let g be continuously differentiable on ]0, 1] and locally Lipschitz
except at a point a ∈]0, 1]. Then Mg is not k-Lipschitz for any k.

Then the conditions which ensure Mg is k−Lipschitz are:

1. Condition (6) for x ∈]0, 1], and

2. For any fixed y ∈]0, 1]

1

2
lim

x→0+

g′+(x)

g′+(Mg(x, y))
≤ k. (7)

Condition (7) may or may not be satisfied depending on the rate at which
M(x, y) → 0 as x → 0. The choice of y > 0 is irrelevant as g(y) is finite and
disappears under the limit.

Example 4 If g(x) = −xp, p < −1 (Mg is a power mean M[p]), g′(x) =

−pxp−1, and Mg is k-Lipschitz for k =
(

1
2

) 1
p . Differentiating Mg

∂Mg

∂x
=

1

p

(
xp + yp

2

) 1
p
−1

p

2
xp−1

=

(
1

2

) 1
p

x−p( 1
p
−1)(xp + yp)

1
p
−1

=

(
1

2

) 1
p

(1 + x−pyp)
1
p
−1.

Given p < −1,

k =

(
1

2

) 1
p

lim
x→0

(
1 + x−pyp

) 1
p
−1

=

(
1

2

) 1
p

.

Example 5 Let M[p], −1 < p < 0 be a power mean with a generator given

by g(x) = −xp = −x−
1
q , q > 1. The Lipschitz constant will be k = sup ∂M

∂x
=

2q = 1
2

1
p .
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To see this

∂Mg

∂x
=
−q

2

(
x−

1
q + y−

1
q

2

)−q−1

·
(
−1

q
x−

1
q
−1

)

= 2qx
1
q
(−q−1)(x−

1
q + y−

1
q )−q−1

= 2q

(
1 +

(
x

y

) 1
q

)−q−1

.

k = sup



2q

(
1 +

(
x

y

) 1
q

)−q−1


 = 2q =

(
1

2

) 1
p

.

Condition (7) deals with the asymptotic behavior of the additive gen-
erators near 0. Its direct verification for a given g may be difficult. In
the remainder of this section we will establish two sufficient conditions that
guarantee that a quasi-arithmetic mean is not Lipschitz (although it is con-
tinuous). These conditions are easier to verify, and they provide a tool for
a quick screening of additive generators with respect to their suitability for
applications.

One sufficient condition involves an inequality on the derivatives of the
inverse of an additive generator. The other condition is that a decreasing
additive generator cannot decrease slower than a certain rate (1/polynomial)
when x → 0. We will express this rate through the growth of an auxiliary
function 1

g−1 , for which the growth is expressed in traditional terms (e.g.,

polynomial) when x →∞. First, two simple auxiliary results.

Lemma 3 If two functions f, g are continuous and differentiable at x = 0
and, f(0) = g(0) and f(x) ≥ g(x) for x > 0, then f ′(0) ≥ g′(0).

Proof. Follows directly from the definition of the derivative. ¤

The next result is a well-known condition for comparability of quasi-
arithmetic means, see, e.g., [3].

Theorem 3 Let g1, g2 be the generators of quasi-arithmetic means Mg1 and
Mg2, and g1 decreasing. Then Mg1 ≤ Mg2 if and only if g1 ◦ g−1

2 is convex.

Theorem 4 Let g be an increasing (decreasing) twice continuously differen-
tiable on ]0, 1] generator of a quasi-arithmetic mean Mg where g−1 = h, and
lim
x→0

g(x) = −∞ (lim
x→0

g(x) = +∞). If h′2−hh′′ ≥ 0 then Mg is not Lipschitz.
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Proof. We will show that M[p] ≤ Mg for any −1 < p < 0, and hence by
Lemma 3 is not Lipschitz. If xp ◦ g−1 is convex, for −1 < p < 0 by Theorem
3, with g1(x) = xp, M[p] ≤ Mg. Let us show that (xp ◦ h)′′ ≥ 0.

(xp ◦ h)′ = php−1h′

(xp ◦ h)′′ = p(p− 1)hp−2h′2 + php−1h′′

= php−2
(
(p− 1)h′2 + hh′′

) ≥ 0.

Given php−2 < 0 for p < 0, h > 0, convexity will hold if for all p < 0

(1− p)h′2 − hh′′ ≥ 0. (8)

Therefore h′2−hh′′ ≥ 0 implies (xp ◦h)′′ ≥ 0 and M[p] ≤ Mg, and by Lemma

3 the Lipschitz constant of Mg is greater than that of M[p], which is 2−
1
p , and

p → 0−. ¤

Remark 2 The generator g can be either increasing or decreasing. Clearly
when changing g to −g, we change h(x) to h(−x). Then h′ changes the sign
but h′′ does not, hence the inequality in Theorem 4 is the same for either
increasing or decreasing generators.

Example 6 Using the geometric mean Mg, take g(x) = ln x with h(x) =
h′(x) = h′′(x) = ex. Then (h′2 − hh′′)(x) = e2x − e2x = 0. Therefore Mg is
not Lipschitz.

For the sake of convenience, we will formulate our next result for de-
creasing additive generators satisfying g(0) = ∞. To obtain the respective
condition on the increasing generators, we simply invert the sign of g.

Theorem 5 Let h = g−1 be the inverse of a decreasing generator g of a
quasi-arithmetic mean Mg. If the function 1

h
grows faster than any power

xq, q > 0, then Mg is not Lipschitz.

Proof. Fix y so that g(y) = h−1(y) = 0, which is always possible (we
remind that g is defined up to an arbitrary linear transformation).
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lim
x→0

∂Mg(x, y)

∂x
= lim

x→0

dh
(

h−1(x)
2

)

dx
,

= lim
x→0

1

2
h′

(
h−1(x)

2

)
(h−1)′(x)

=
1

2
lim
x→0

h′
(

h−1(x)

2

)
1

h′(h−1(x))
.

Let z = h−1(x)
2

. Then

lim
x→0

∂Mg(x, y)

∂x
=

1

2
lim
z→∞

h′(z)

h′(2z)
.

Since h decreases faster than the power function p(z) = Czr, l’Hôpital’s rule
gives

0 = lim
z→∞

h(z)

p(z)
= lim

z→∞
h′(z)

p′(z)
= lim

z→∞
h′(2z)

p′(2z)
.

For convenience of notation take p such that p′(z) = 1
zq . Then p′(z) =

p′(2z)2q.

lim
x→0

∂Mg(x, y)

∂x
=

1

2
lim
z→∞

h′(z)

h′(2z)
=

1

2
lim
z→∞

h′(z)

h′(2z)

p′(2z)2q

p′(z)
= 2q−1.

Since q can be arbitrarily large, the derivative is unbounded and Mg is
not Lipschitz. ¤

Example 7 Let the generator be g(x) = − ln x, cf. Example 6. Clearly its
inverse is exp(−x), and the auxiliary function 1

h(x)
= exp(x), which grows

faster than any polynomial, hence the corresponding geometric mean is not
Lipschitz.

Further take any power of the logarithm g(x) = (− ln x)r, r > 1. The

auxiliary function 1
h(x)

= exp(x
1
r ), it grows faster than a polynomial, hence

the resulting mean is not Lipschitz either. Note that this quasi-arithmetic
mean is related to the Aczél-Alsina family of t-norms [2,8] by the equation

Mg = (TAA
r )

1
r√2 ,

which shows directly that Mg is not Lipschitz (f(x) = Mg(x, 1) = TAA
r (x, 1)

1
r√2 =

x
1
r√2 is not Lipschitz).
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Example 8 Consider the generator g(x) = (− ln x)2, 1
h(x)

= e
√

x. From the
previous example, r = 2 and we know the resulting mean is not Lipschitz,
however this would not have been apparent from the application of Theorem
4,

(h′2 − hh′′)(x) =
1

4x
e−2

√
x − 1

4x
e−2

√
x − 1

4
√

x3
e−2

√
x = − 1

4
√

x3
e−2

√
x < 0.

4.3 Weighted quasi-arithmetic means

Consider weighted quasi-arithmetic means Mw,g. We recompute conditions
(6) and (7) for the case of unequal weights. For this we take partial derivatives
with respect to all arguments. The Lipschitz constant is the largest, hence
we have conditions

g′−(x) ≤ k

max wi

inf
z

g′−(z) (9)

g′+(x) ≤ k

max wi

inf
z

g′+(z)

where the minimum for z is over [M(x, 0, . . . , 0),M(x, 1, . . . , 1)], and

lim
x→0+

g′+(x)

g′+(M(x, c, . . . , c))
≤ k

max wi

(10)

with c ∈]0, 1].
Conditions (9) and (10) can also be used for symmetric means in the

multivariate case, where max wi = 1
n
. It is clearly seen that the higher the

number of variables, the smaller is the Lipschitz constant, if it exists.

5 Continuous generated functions with neu-

tral element

Consider generated aggregation functions in Definition 4. f has neutral ele-
ment e and is continuous on [0, 1]n [11]. Similarly to uninorms (see Section 2),
f acts on [0, e]n as a continuous scaled t-norm Tf built from the additive gen-
erator gT (t) = −g(et) (underlying t–norm), and f acts on [e, 1]n as a continu-
ous scaled t-conorm Sf built from the additive generator gS(t) = g(e+(1−e)t)
(underlying t–conorm). Note that, either Tf , or Sf , or both are necessarily

15



nilpotent (if both are strict, Ran(g) = [−∞ + ∞] and we obtain a repre-
sentable uninorm, which is discontinuous).

Conversely, given a value e ∈]0, 1[, a continuous t-norm T with an additive
generator gT and a continuous t-conorm S with an additive generator gS, the
mapping g : [0, 1] → [−∞, +∞] given by

g(t) =

{ −gT

(
t
e

)
, if t ∈ [0, e],

gS

(
t−e
1−e

)
, if t ∈]e, 1],

defines a generated aggregation function with the neutral element e, with the
help of (2). If either T or S or both are nilpotent, and both are continuous,
then f is continuous.

If Tf is strict, 0 is the absorbing element of f , and if Sf is strict, 1 is the
absorbing element of f . In these cases we note that f cannot be k−Lipschitz
for k < 1/e (or k < 1/(1− e) respectively), since f(e, 1) = 1, f(0, 1) = 0 (or
f(0, e) = 0, f(0, 1) = 1 respectively).

Remark 4 Since the additive generators of Tf and Sf are defined up to an
arbitrary positive multiplier, it is possible to use different gT and gS which
produce the same t-norm and t-conorm on [0, e]n and [e, 1]n, but different
values on the rest of the domain. Thus we can use

g(t) =

{ −agT

(
t
e

)
, if t ∈ [0, e],

bgS

(
t−e
1−e

)
, if t ∈]e, 1],

with arbitrary a, b > 0.

Let us now concentrate on k-Lipschitz generated functions. First, consider
the case of both Tf and Sf being nilpotent (both g(0) and g(1) are finite).
By applying the results of Section 4 we have the conditions analogous to (5)
(or (6)), except that the factor 1

2
is not present, namely:

g′(x) ≤ k · min
y∈[0,1]

g′(f(x, y)). (11)

Note that f(x, y) ranges over [0, f(x, 1)] for x ≤ e and over [f(x, 0), 1] for
x ≥ e in (11). This implies k−concavity of g on [0, e] and 1

k
-convexity on

[e, 1]). A function g is called k−concave if −g is k−convex (we remind that
g is increasing in (2), as opposed to the case of t–norms in Section 3). This
is not surprising, given that f is k−Lipschitz only if the underlying t-norm
and t-conorm are both k−Lipschitz. However, condition (11) is obviously
stronger.
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Example 9 One interesting result of this is that the only 1-Lipschitz gener-
ated aggregation function with the neutral element e ∈]0, 1[ is the one that has
underlying ÃLukasiewicz t–norm and t–conorm Tf and Sf . Indeed, g must be
concave on [0, e] and convex on [e, 1] for Tf and Sf to be 1-Lipschitz, but also
g must be concave on [0, f(x, 1)] for all x ∈ [0, e] for condition (11) to hold,
and similarly must be convex on [f(x, 0), 1] for all x ∈ [e, 1]. Taking x = e, g
must be both convex and concave on [0, 1], which implies g is linear on [0, 1].
Then g(x) = c(x− e), and since it is defined up to an arbitrary multiplier we
can simply take g(x) = x− e. This 1-Lipschitz generated function is given by

f(x, y) = min(1, max(0, x + y − e)).

Consider now the case of one of Tf , Sf being strict, let it be Tf . Then we
also need the limit condition analogous to (7),

lim
x→0+

g′+(x)

g′+(f(x, y))
≤ k. (12)

In this case 0 is the absorbing element of f . However, it is easy to check
that both x and f(x, y) tend to 0 at the same rate for any y, and the limit
in (12) is 1. Hence condition (12) is always satisfied. This implies that
Theorems 4 and 5 are no longer true for this type of aggregation functions.

Example 10 Let e = 1
2
, g(x) = ln 2x and g(−1)(x) = min(1, 1

2
exp(x)). Then

f(x, y) = min(1, 2xy), which is 2-Lipschitz.

6 Conclusion

k-Lipschitz aggregation functions are important for applications because they
limit the changes in the outputs due to input inaccuracies, to a fixed factor
of k. k-Lipschitz triangular norms and conorms have been already charac-
terized by k-convex additive generators, however no analogous results were
available for other aggregation functions such as quasi-arithmetic means and
generated functions with a neutral element. In this work we have estab-
lished: a) verifiable conditions which guarantee that an aggregation function
is k−Lipschitz for a given k, and b) alternative sufficient conditions which
guarantee that an aggregation function is not Lipschitz. We also presented
various examples of both Lipschitz and non-Lipschitz aggregation functions.
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Interestingly, we found that the only 1-Lipschitz generated aggregation func-
tion with a neutral element is the one which has the ÃLukasiewicz underlying
t-norm and t-conorm. Our results will benefit those who design aggregation
functions for practical applications, as they allow one to make an informed
choice on suitability of specific functions for these applications.
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operators: properties, classes and construction methods. In T. Calvo,
G. Mayor, and R. Mesiar, editors, Aggregation Operators. New Trends
and Applications, pages 3–104. Physica-Verlag, Heidelberg, New York,
2002.

[5] T. Calvo and R. Mesiar. Stability of aggregation operators. In 2nd
Conf. of the Europ. Soc. for Fuzzy Logic and Technology, pages 475–
478, Leicester, 2001.

[6] D. Dubois and H. Prade. On the use of aggregation operations in infor-
mation fusion processes. Fuzzy Sets and Systems, 142:143–161, 2004.
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[9] A. Kolesárová. 1-Lipschitz aggregation operators and quasi-copulas.
Kybernetika, 39:615–629, 2003.
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