This is the published version (version of record) of:

Available from Deakin Research Online:

http://hdl.handle.net/10536/DRO/DU:30031140

Reproduced with kind permission of the copyright owner. ©2010 IEEE. Personal use of this material is permitted. However, permission to reprint/republish this material for advertising or promotional purposes or for creating new collective works for resale or redistribution to servers or lists, or to reuse any copyrighted component of this work in other works must be obtained from the IEEE.

Copyright : ©2010 IEEE.
Fault Tolerance Force for Redundant Manipulators

Hamid Abdi, IEEE Member,
Centre for Intelligent Systems Research (CISR)
Deakin University
Waurn Ponds, VIC 3217, Australia
Email: Hamid.Abdi@deakin.com.au

Saeid Nahavandi, IEEE SM
Centre for Intelligent Systems Research (CISR)
Deakin University
Waurn Ponds, VIC 3217, Australia
Email: Saeid.Nahavandi@deakin.edu.au

Abstract—Fault tolerant manipulators maintain their trajectory even if their joint/s fails. Assuming that the manipulator is fault tolerant on its trajectory, fault tolerant compliance manipulators provide required force at their end-effector even when a joint fails. To achieve this, the contributions of the faulty joints for the force of the end-effector are required to be mapped into the proper compensating joint torques of the healthy joints to maintain the force. This paper addresses the optimal mapping to minimize the force jump due to a fault, which is the maximum effort to maintain the force when a fault occurs. The paper studies the locked joint fault/s of the redundant manipulators and it relates the force jump at the end-effector to the faults within the joints. Adding on a previous study to maintain the trajectory, in here the objective is to providing fault tolerant force at the end-effector of the redundant manipulators. This optimal mapping with minimum force jump is presented using matrix perturbation model. And the force jump is calculated through this model for single and multiple joints fault. The proposed optimal mapping is used in different fault scenarios for a 5-DOF manipulator; also it is deployed to compensate the force at the end-effector for the 5-DOF manipulator through simulation study and the results are presented.

Keywords-component; Redundant Serial Link Manipulator, Fault Tolerance Compliance, Minimum Force Jump.

I. INTRODUCTION

Fault tolerant manipulators are essential where high available robots are required such as robotic manipulators working in hazardous environments, nuclear disposal, exploring deep sea and space [2] handling of hazardous or explosive materials [1,3].

The literature surrounding the fault tolerant manipulator has focused on the design level or the control level. The design level addresses fault tolerant serial link redundant manipulator [4,6] or some other structures such as parallel [5]. The control level includes Fault analysis and fault tolerant motion planning or control such as Fault Detection, Fault Isolation and Identification [7,8,20], Fault Recovery [9,12,13,14] and safety issues [3].

Serial link redundant manipulators (SLRM) have received great attention in the robotics community. Fault tolerant design of the SLRMs can be achieved by adding extra kinematic redundancy [4,9,10,11]. Using this, the manipulator maintains its dependability to perform the required [12] or prioritized tasks [13] even if one or more joint fails. In addition it has been observed that adding kinematic redundancy not only improves the fault tolerance specifications of the manipulators, but also it promotes other static or dynamic advantages. Including higher dexterous movements [11], lower maintenance and repair costs, more capability for obstacle avoidance [3] or essentially motion planning and control with multiple criteria [14,15]. However only having kinematic redundancy, does not guarantee the fault tolerant operation of the redundant manipulators [16].

The fault tolerant compliance manipulator should continue their task with minimum velocity and force jump at the end effector (EEF) when a fault occurs into the joint/s of the manipulator (however depends to the task the velocity jump can be released when there is no constraints on the trajectory). This means that the contribution of the locked joint for the force and velocity of the EEF just prior to fault time has to be compensated through proper command for the torque and velocity of the healthy joints. The velocity of the EEF has been studied previously and the solution has been provided in [12,15], our focus in this paper is about fault tolerant compliance of the manipulator. Fault tolerant force control for parallel manipulator has been addressed in [23] based on D’Ambert principle and equivalent force method, the minimum force jump has been achieved for a 2-DOF parallel manipulator. Robust adaptive control of the redundant manipulator was addressed [21] where it was designed for a 9-DOF manipulator. Cooperative manipulators are proposed for fault tolerant force control at their EEF. The second manipulator is used to carry out the load of the capacity of the first manipulator due to the fault for handling a load [22]. The work in [17] provides a hybrid solution by dividing the manipulation tasks into primary and secondary tasks, and the fault tolerant was achieved by maintaining the only primary manipulation task under fault. In [24] the problem is called torque redistribution but the work addresses the PID controllers for the joints of the faulty robot.

Fault tolerant properties of SLRM and their motion planning have been addressed extensively by Maciejewski et al [10,11,14,16,17], but fault tolerant force at the EEF for SLRM has not investigated as much as the manipulator motion. To achieve fault tolerant manipulating force at the EEF, an optimal mapping is required to map the jump of the force due to the locked joint/s into the proper torque commands for the healthy joints. Similar approach has been studied for the joint velocities by the authors and the optimal joint velocities to resolve the locked joint fault has been provided as was indicated in Appendix A. In this study the focus is on force jump.
The rest of the paper is organized as follows; the Jacobian for SLRMs with some immobilized joints will be introduced. Then joint torque and force at EEF is studied under locked joint fault through matrix perturbation model. Then the force jump is calculated and minimum force jump is provided. The extension form single fault to multiple faults is provided. Finally different fault scenarios are studied and the optimal mapping with minimum force jump is calculated, the result has been used for fault tolerant force of a 5-DOF spatial manipulator through a simulation study and the result are presented.

II. KINEMATIC OF REDUNDANT MANIPULATORS

A. Kinematic and Self motion manifolds

The forward kinematics of a manipulator relates joint angles for revolute joints (joint displacements for prismatic joints) to the EEF position/orientation (1). The joint variables (2) define the configuration space and position/orientation variables (3) define the workspace.

\[X = f(q) \]
\[q = [q_1 q_2 \ldots q_n]^T \]
\[X = [x_1 x_2 \ldots x_m]^T \]

The manipulator is n-DOF, and m is the work space dimension. The degree of kinematic redundancy (DOR) in non-singular configurations is n-m. In [3], the number of required redundancy was investigated by applying joint fault possibility and total reliability of the manipulator. The upper limit of optimal fault tolerant configuration for redundancy is studied [16].

B. Jacobian of Kinematic Redundant Manipulator under locked faults/s

The Jacobian of manipulators is indicated by (5). Jacobian relates the EEF translation and orientation velocities to the joint variable speeds (6).

\[J = \frac{\partial X}{\partial q} \]
\[\dot{X} = J \dot{q} \] (4)

If \(J_k \) (7) is the kth columns of \(J \), each column indicates the contribution of the corresponding joint velocity in the velocity of the EEF.

\[J = \begin{bmatrix} J_1 & J_2 & \ldots & J_{i-1} & I_i & J_{i+1} \ldots & J_n \end{bmatrix} \] (7)

When manipulator has a fault in the ith joint, this joint does not contribute into EFF velocity, so the Jacobian of the manipulator under an immobilized joint fault can be introduced by replacing a zero vector in the ith column of the manipulator Jacobian, this Jacobian is called reduced Jacobian (8) which, can be rewritten as (9)

\[J = \begin{bmatrix} J_1 & J_2 & \ldots & J_{i-1} & 0 & J_{i+1} \ldots & J_n \end{bmatrix} \] (8)

\[\dot{X} = J \dot{q} \] (9)

where

\[\dot{J} = \begin{bmatrix} J_1 & J_2 & \ldots & J_{i-1} & J_{i+1} \ldots & J_n \end{bmatrix} \] (10)

For single fault, there are n reduced Jacobian matrices

\[\{ J_1, J_2, \ldots, J_n \} \] (12)

With this approach, if the manipulator has f faults, then the reduced Jacobian matrices will be indicated with permutation of f zero vectors in the original Jacobian matrix.

III. OPTIMAL FORCE JUMP IN MANIPULATORS

A. EEF Force and joint torque

For a SLRM and in a given configuration, applying a force into the EEF results into corresponding torques within the joints as (17). In duality the torque in the joints results into corresponding forces on the EEF. The general dynamic equation of the SLRM is

\[\tau = J^T \tau + M(q) \ddot{q} + V(q, \dot{q}) + G(q) = r \] (18)

where

\[\tau = r \]

\[M(q) \quad \text{is mass matrix} \]

\[V(q, \dot{q}) \quad \text{Coriolis and centrifugal forces} \]

\[G(q) \quad \text{Gravity forces} \]

\[\tau_d \quad \text{torque to provide the motion profile} \]

If the manipulator is required to provide a force at EEF or a force is applied to the EEF then (20) is changed into (21)

\[M(q) \ddot{q} + V(q, \dot{q}) + G(q) = \tau_d + J^T F \] (21)

and \(J^T F \) is the joint torque map of the force is applied into or provided by the EEF to the joint torque space.
B. Modelling of joint fault through perturbation

If the kth joint is a locked joint then the kth reduced Jacobian is \(kJ \). From perturbation model if this fault is modelled by variation in Jacobian then force at the EEF and torque equation is changed into (22).

\[
\tau + \Delta \tau = (J + \Delta J)^T (F + \Delta F)
\]
(22)

\(\Delta \tau \) is the change into the torques at fault time.

\(\Delta J \) Jacobian matrix perturbation due to fault

\(\Delta F \) force jump at EEF

For fault tolerant force at EEF it is required find a new joint’s torque to minimize the force jump. The new joint’s torque is called \(kM \). The faulty manipulator can be defined by \(kM \).

\[
M = \frac{1}{k} \frac{\partial \tau}{\partial \lambda}
\]

When \(kM \) is not zero then the force jump can be calculated by a series of calculation results in (33).

\[
{\Delta}F = (J^T)\tau - (J^T)kU
\]
(30)

\[
{\Delta}F = (J^T)\tau - (J^T)kU
\]
(31)

\[
{\Delta}F = (J^T)\tau - (J^T)kU
\]
(32)

\[
{\Delta}F = (J^T)\tau - (J^T)kU
\]
(33)

where \(N(J^T) = I - (J^T)kU \). The null space of the \(J^T \) is the map of the null space of the kth Jacobian matrix. It provides the frame work to calculate force jump for a single joint fault. The necessary conditions for no force jump as follows.

The null space of the \(J^T \) is zero means that \(J^T \) is full row ranked matrix.

The second condition releases the full rank for \(J^T \) but it limits the force at EEF to do not have projection into null space of \(J^T \).

Minimum force jump due to multi-joint faults

If two joint fail then from (23), say kth and ith joints then

\[
k^jU = k^jJ^T(F + k^j\Delta F)
\]
(34)

where \(\Delta J = [0 ... -J_k ... -J_i ... 0] \)

\[
J + \Delta J = k^jJ
\]
(36)

This model results in

\[
k^jU = (k^jJ)^T(F + \Delta F)
\]

\[
k^j\Delta F = [I - (k^jJ)^T]k^jJ^T(F + \Delta F) = N(k^jJ^T)F
\]

\(k^jJ \) reduced Jacobian matrix, fault in kth and ith joints.

\(k^jJ \) reduced Jacobian matrix, fault in kth and ith joints.

\[
N(k^jJ^T) = I - (k^jJ)^T
\]

is the null space of the reduced Jacobian matrix

In general if

\[
S = \{ i_1, i_2, ..., i_n | i_1 < i_2 < ... < i_n , 1 \leq i, i \leq n \}
\]

is the set of faulty joints then the minimum force jump can be achieved through

\[
s_iU = (s_iJ)^T(F + \Delta F)
\]

\[
s_i\Delta F = [I - (s_iJ)^T]s_iJ^T(F + \Delta F) = N(s_iJ^T)F
\]

\(s_iJ \) reduced Jacobian matrix, fault \(s_i \) joints

\[N(s_iJ^T) = I - (s_iJ)^T
\]

is the null space of the reduced Jacobian matrix due to \(s_i \) faults.

IV. CASE STUDY- MAPPING FOR 5DOF MANIPULATOR

A 5-DOF spatial manipulator, with D-H parameters indicated in Table 1 is modelled using Matlab Robotics Toolbox [19]. Table 2 indicates the manipulator parameters prior to fault time, the velocity of the EEF of the manipulator at the indicated configuration in Fig.2 is \(\dot{X} = [0.033 \ 0.01 -0.23]^T \text{cm/sec} \), and the force at EEF is assumed as \(F = [800 \ 500 \ 100]^T \).

Three different fault scenarios have been tested through this model including single joint fault using (29) and (33) and multiple joint failure using (37),(38).

The last two columns are computed by \(\frac{\dot{J}Q}{Q} \) and \(\frac{JQ}{F} \) respectively and they are indicating how much the
joint velocity or torque contributes to the velocity or force of the EEF at the given configuration.

A. First Scenario: Single Joint Fault

In this scenario, there are five possible selections, first assume the fault is in the first joint. The compensation torque mapping and force jump are calculated as follows. For the fault in the second, third, fourth and the fifth joints with the same approach as the first joint, the results are presented as follows.

TABLE 1

<table>
<thead>
<tr>
<th>Joint No</th>
<th>(s_i)</th>
<th>(d_i)</th>
<th>(s_i)</th>
<th>(\theta_i)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>0.05</td>
<td>0.45</td>
<td>0</td>
<td>(\theta_1)</td>
</tr>
<tr>
<td>2</td>
<td>0.05</td>
<td>0.32</td>
<td>90 Deg</td>
<td>(\theta_2)</td>
</tr>
<tr>
<td>3</td>
<td>0.05</td>
<td>0.18</td>
<td>0</td>
<td>(\theta_3)</td>
</tr>
<tr>
<td>4</td>
<td>0.05</td>
<td>0.12</td>
<td>0</td>
<td>(\theta_4)</td>
</tr>
<tr>
<td>5</td>
<td>0.05</td>
<td>0.08</td>
<td>0</td>
<td>(\theta_5)</td>
</tr>
</tbody>
</table>

TABLE 2

<table>
<thead>
<tr>
<th>Joint No</th>
<th>(\theta_i)</th>
<th>(\dot{\theta_i})</th>
<th>(\tau_i)</th>
<th>Contribution of joint torques into force of EEF</th>
<th>Contribution of joint torques into velocity of EEF</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>-35.01</td>
<td>-35.01</td>
<td>3.18</td>
<td>0.19</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>0</td>
<td>-12.33</td>
<td>1.12</td>
<td>0.89</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>26.85</td>
<td>0</td>
<td>2.44</td>
<td>0.28</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>10.00</td>
<td>10.00</td>
<td>0.91</td>
<td>0.09</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>4.00</td>
<td>4.00</td>
<td>0.36</td>
<td>0.11</td>
<td></td>
</tr>
</tbody>
</table>

I. First joint fault

In this case, using the provided D-H parameters in Table 1, and the given configuration in Table 2, the Jacobian of the manipulator is

\[
J = \begin{bmatrix}
-0.00 & -0.00 & 0.16 & 0.00 & 0.00 \\
-0.57 & -0.15 & 0.28 & 0.20 & 0.08 \\
-0.64 & -0.48 & 0.00 & 0.00 & 0.00 \\
\end{bmatrix}
\]

(34)

When first joint fails then

\[
\hat{J} = \begin{bmatrix}
0.00 & 0.16 & 0.00 & 0.00 \\
-0.15 & 0.28 & 0.20 & 0.08 \\
-0.48 & 0.00 & 0.00 & 0.00 \\
\end{bmatrix}
\]

(35)

and the optimal torque map for faulty robot is

\[
1U = \hat{J}^T \left(J^T \right)^{-1} f = \begin{bmatrix}
-12.33 & 26.85 & 10.00 & 4.00' N.m \\
\end{bmatrix}
\]

(42)

The required torque to compensate the fault is calculated as:

\[
\tau = \begin{bmatrix}
0 & -12.33 & 26.85 & 10.00 & 4.00 \end{bmatrix} N.m
\]

In the next step the error of this mapping can be determined though (33). Substitution of the parameters results into zero force jump at the EEF.

II. 2nd, 3rd, 4th and 5th single joint fault

For other selection of single joint faults, Table 3 indicates the compensating joint torques similar to the first joint. This study indicated that at the giver configuration only the fault at the third joint cannot be tolerated so there is force jump.

A. Second Scenario: Two Joint Faults

For two joint faults there are ten possible selections. The result of the minimum force jump mapping for two of these selections are provided in Table 4.

I. Faults in the 2nd and 3rd joints

In the second column of Table 4, provides the optimal mapping of torques when fault this fault occurs. The minimum force jump is 80N.

II. Faults in the 2nd and 4th joints

The third column of Table 4 presents the mapping and associated force jump at EEF due to this fault and it indicates that the fault in the 2nd and 4th joints is completely tolerated.

TABLE 3

<table>
<thead>
<tr>
<th>Joint No</th>
<th>2nd Joint Fault N.m</th>
<th>3rd Joint Fault N.m</th>
<th>4th Joint Fault N.m</th>
<th>5th Joint Fault N.m</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>-35.01</td>
<td>-35.01</td>
<td>-35.01</td>
<td>-35.01</td>
</tr>
<tr>
<td>2</td>
<td>0</td>
<td>-12.33</td>
<td>-12.33</td>
<td>-12.33</td>
</tr>
<tr>
<td>3</td>
<td>26.85</td>
<td>0</td>
<td>26.85</td>
<td>26.85</td>
</tr>
<tr>
<td>4</td>
<td>10.00</td>
<td>10.00</td>
<td>0</td>
<td>10.00</td>
</tr>
<tr>
<td>5</td>
<td>4.00</td>
<td>4.00</td>
<td>0</td>
<td>4.00</td>
</tr>
</tbody>
</table>

TABLE 4

<table>
<thead>
<tr>
<th>Joint No</th>
<th>2nd and 3rd Joint Fault N.m</th>
<th>2nd and 4th Joint Fault N.m</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>-35.01</td>
<td>-35.01</td>
</tr>
<tr>
<td>2</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>3</td>
<td>26.85</td>
<td>26.85</td>
</tr>
<tr>
<td>4</td>
<td>10.00</td>
<td>10.00</td>
</tr>
<tr>
<td>5</td>
<td>4.00</td>
<td>4.00</td>
</tr>
</tbody>
</table>

TABLE 5

<table>
<thead>
<tr>
<th>Joint</th>
<th>2nd, 3rd, 4th and 5th Joint Fault N.m</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>-35.01</td>
</tr>
<tr>
<td>2</td>
<td>0</td>
</tr>
<tr>
<td>3</td>
<td>26.85</td>
</tr>
<tr>
<td>4</td>
<td>0</td>
</tr>
<tr>
<td>5</td>
<td>4.00</td>
</tr>
</tbody>
</table>

V. Fault Tolerant Force at EEF

A. Simulation

To validate the fault tolerant force at the EEF for a 5DOF spatial manipulator, with D-H parameters in Table.1, a
A simulation study has been developed using Matlab Robotic Toolbox. The indicated trajectory in Fig.1, is a fault tolerant zero velocity jump trajectory. The trajectory starts form \(R_s = [1.150 0.134 0.034]^T \, m \) and it ends at \(R_d = [0.781 0.509 0.280]^T \, m \). The focus on this study has been the force jump at the EEF.

Fig. 1. Manipulator trajectory, the trajectory is provided by a maximum velocity of 15mm/sec. The 3rd joint supposed to have a fault after 50sec, for the simulation the manipulator will not have any velocity jump. The focus is to study the force jump.

The main objective of this simulation is to provide fault tolerant operation for the force at EEF and compare the provided force by the healthy and faulty manipulators in a dynamic problem. As the result of this simulation joint torques for the healthy and faulty manipulator are computed to maintain a fault tolerant force \(F = [80N, 50N, 10N]^T \) at the EEF. Fig.2. indicates joint torques for healthy manipulator while the next figure shoes the torques for faulty manipulator (3rd joint locked). As it has been assumed the trajectory have been maintained using minimum velocity jump techniques Appendix A.

Fig. 2. Manipulator joint torques for the indicated trajectory

Fig. 3. Manipulator new joint torque profiles when the 3rd joint locked after 50sec

Fig. 4. Compare the Force at EEF for healthy and faulty manipulator. Blue line is force for the healthy manipulator (solid line), Red line is for the faulty manipulator (dash line)

B. Discussion

Fig.3 in compare to Fig.1 indicates how much lack of the contribution of the torque of the 3rd joint is mapped into other joint torques. As it is expected the 3rd joint force will mapped to zero after fault (50th second of the simulation scenario). Other joint forces have been changed to provide the required force at the EEF.
VI. CONCLUSION

Locked joint fault of the redundant manipulator has been addressed and the end-effector force jump due to the fault has been studied. Optimal mapping of joint torque to compensate the effect of a locked joint fault for serial link redundant manipulators has been derived though the minimization of force jump at fault.

Three different fault scenarios is studied with the proposed mapping and the force jump is calculated. Then through the simulation study for the 5DOF manipulator, the proposed fault tolerant compliance method is used to maintain the force at EEF under faulty joint. And the result justified the proposed mapping based on matrix perturbation model.

Appendix-A

The optimal joint velocities to minimise the EEF velocity jump due to the f joint faults when

\[S_f = \{ i_1, i_2, \ldots, i_f | i_1 < i_2 < \ldots < i_f, 1 \leq i_s, i_f \leq n \} \]

\[S_f U = (S_f J)^{-1} \sum_{k \in S_f} J_k \hat{Q}_k \]

Using this optimal mapping the minimum EEF velocity jump is

\[\Delta \dot{X} = (S_f J)^{-1} (S_f J)^T - I \sum_{k \in S_f} J_k \hat{Q}_k \]

\(S_f U \) : change in joint velocities to resolve the fault

\(\dot{Q}_k \) : velocity of the faulty joint prior to fault time

\(\Delta \dot{X} \) : minimum velocity jump at the EEF

\(S_f J \) : reduced Jacobian of the manipulator with into \(S_f \)

\(S_f \) : set of faulty joint

ACKNOWLEDGEMENT

The Authors would like to acknowledge Dr. Zoran Najdovski for his comments on the previous work as this work is a part of series of work on fault tolerant robotics.

REFERENCES