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Fabrics having an interesting unidirectional water-transfer effect

have been prepared by a special coating technique to create

a wettability gradient across the fabric thickness, and the treated

fabrics also show considerably different breakthrough pressures on

the two fabric sides.
Directional fluid transport is imperative to many important physio-

logical functions and physical processes. Examples include sweating,

fluid transport across cell membranes,1 water transport from soil to

air through plants,2 desalination of seawater,3 flow management in

fuel cells4 and microfluidic systems.5,6 While the fluid delivery in all of

the directional fluid transport systems appears alike, the driving force

for propelling the fluid motion in each of the systems could be very

different. In biological systems, aquaporins (water channel proteins)

play a critical role in transferring water across biological membranes7

by electrostatically flipping water molecules through the channel,8

while the gradients in mechanical pressure involves in many other

directional fluid transport systems.

Surface tension heterogeneity has been known as a driving force to

guide water motion on flat surfaces for decades. The imbalanced

surface tension can be formed spatially in fluid due to the induced

changes in local fluid properties9 (the motion is also called ‘‘Maragoni

flow’’), or facially by modification of solid surface,10 which shows

great potential in droplet microfluidics.6,11 A natural example can be

found in Stenocara beetle, an insect in the Namib Desert having

a hydrophobic surface with a random array of hydrophilic bumps on

the wings.12 Such an asymmetric surface tension endows the Sten-

ocara with an incredible ability to collect water for its survival in the

dry desert environment, thus very useful for development of water-

harvest devices.13 Nevertheless, all these works are based on flat

surfaces. Little is known about using imbalanced surface tension to

drive directional fluid motion through the thickness of porous

materials.

In this study, we have developed a simple, but very effective and

versatile, method to produce an imbalanced surface tension across

the thickness of fabrics, and demonstrated that the fabrics have the

ability to spontaneously transfer water unidirectionally through the
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fibrous architecture. A plain weave polyester fabric (thickness 520

mm) has been used as a sample porous membrane.

Our method is based on a solution coating technology to form

a superhydrophobic layer containing TiO2 and hybrid silica on

a polyester fabric, and subsequent exposure of the one side of the

superhydrophobic fabric to a multi-wavelength ultra-violet (UV)

beam to make the irradiated fabric side hydrophilic, leading to the

formation of asymmetric wettability through the fabric thickness.

The coating solution was prepared by a sol–gel route similar to the

synthesis of TiO2-SiO2 hybrid materials from titanium tetraisoprop-

oxide and tetraethylorthosilicate,14 but different in that two organic

silanes (hexadecyltrimethoxysilane and 3-trimethoxysilylpropane

thiol-1) (Scheme 1) were used to leave non-hydrolysable groups in the

product. Through a dip-coating process, a thin layer of conformal

coating composed of TiO2 and hybrid silica having hydrophobic

hexadecyl and 3-thiol propyl groups was readily formed through the

polyester fabric. Fig. 1 (Right panel) shows the scanning electron

microscopic energy-dispersive X-ray (SEM-EDX) mapping images

(see the ESI† for the cross-section view and TEM), indicating the

formation of a uniform coating layer. The surface water contact angle

increased to 170� on both sides of the fabric after the coating

formation (Left panel of Fig. 1).

Subsequent UV irradiation from one side of the fabric led to

a series of chemical reactions catalysed by TiO2 within the irradiated

portion of the membrane,14,15 converting those pre-formed hydro-

phobic surface groups in the coating layer into hydrophilic oxygen-

containing groups, including the highly water-absorptive sulfonic

acid and carboxylic acid (see the ESI†). The up-shift in the S2p

binding energy from 161 eV and 163 eV to 167 eV seen in the high

resolution X-ray photoelectron spectroscopy (XPS) spectra after the

UV irradiation (Fig. 2a) indicates the occurrence of chemical changes

from -S–H and -S–S- to -SO3H, respectively. The corresponding XPS

C1s spectra shown in Fig. 2b further confirm the presence of –COOH

groups in the irradiated surface. As a consequence, the surface water

contact angle changed from 170�, characteristic of the super-

hydrophobic TiO2-silica coating (Left bottom panel of Fig. 1), to

about 30� after the UV irradiation. Thus, the initially hydrophobic

coating was converted into a hydrophilic surface through the

photochemical reactions.
Scheme 1 The superhydrophobic coating formation.
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Fig. 1 Digital photographic images of water spreading in the plain-

weave polyester fabric (Top left) and forming a water droplet on the

TiO2-silica coated polyester fabric (Bottom left), and SEM-EDX

mapping of element C, O, Si, S and Ti on the coated fabric (Right panel).

Fig. 2 High-resolution XPS spectra of a) S2p and b) C1s for the coated

fabric before and after the UV irradiation.
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Due to the UV-irradiation, the directly irradiated fabric side turned

hydrophilicity. Water droplets can readily spread over the UV-irra-

diated fabric surface, but cannot transfer across the fabric through its

thickness (Fig. 3, 1�6). Similar results were observed by repeatedly

dropping water droplets onto the UV-irradiated side of the TiO2-

silica pre-coated fabric. When water was dropped onto the un-irra-

diated, superhydrophobic backside of the same fabric membrane,

however, a very fast through-thickness water transfer was observed

(Fig. 3, 10�60). Movies in the Supplementary Information shows such

a water transfer phenomenon in real-time. These observations clearly

show a through-thickness directional water transfer from the TiO2-

silica coated (hydrophobic) to the UV-irradiated (hydrophilic) side of

the fabric.
Fig. 3 Still frames from digital videos of a blue-coloured water droplet

(�40 mL, in which 50 mg/L of Reactive blue 2 was used to guide the eye,

but the presence of the dye showed no influence on contact angles of the

water drop on the fabrics) on the TiO2-silica-coated and UV-irradiated

polyester fabric: (Top) dropped on the UV-irradiated fabric surface

(image 1�6, time interval is 0.12 s), and (Bottom) dropped on the back

side (image 10�60, time interval is 0.28 s).

This journal is ª The Royal Society of Chemistry 2010
To confirm the through-thickness asymmetric UV treatment, we

applied the same UV treatment to a double-layered fabric consisting

of two TiO2-silica-coated polyester fabrics. We found that the water

contact angle of the front surface of the second layer fabric, which

was in contact with the fabric layer receiving the UV irradiation,

remained almost unchanged (�160�) after the UV treatment. The

small reduction in the surface superhydrophobicity with respect to the

pristine TiO2-silica-coated polyester fabric (i.e. 170�) suggests that the

UV beam has been substantially weakened after passing through the

first layer fabric.

The surface water contact angle measurements on the top side for

each of the constituent layers in the UV-irradiated double-layered

polyester fabrics clearly show the presence of a surface tension

gradient across the fabric thickness and the feasibility to adjust the

hydrophobicity and hydrophilicity by changing the UV irradiation

period (Note that the surface contact angle measurement for the un-

irradiated side of a single-layered TiO2-silica-coated fabric after the

UV irradiation is difficult due to the fast water transfer through the

fabric).

The wetting depth of the single layer TiO2-silica-coated polyester

fabric after the UV irradiation was measured by X-ray microtomo-

graph (micro-CT). As shown in Fig. 4, the sliced 3D images at

different fabric depth show different degrees of wetting. One side of

the fabric was totally wetted by water, while the opposite side was

dry. The degree of water wetting gradually decreased with increasing

distance from the UV-irradiated hydrophilic surface, and no wetting

was evident at a depth larger than 246 mm, which is less than the half

of the fabric thickness.

To further characterise the directional water transfer across the

asymmetrically modified fabric, we measured the initial pressure

required to allow water to break through the fabric (critical break-

through pressure, Pc). To facilitate understanding, the pressure unit

cmH2O is used. As shown in Fig. 5a, at least 18 cmH2O of pressure

was needed to transfer water from the hydrophilic to the hydrophobic

side through the TiO2-silica-coated polyester fabric after the UV

irradiation for about 60 min, whereas the corresponding Pc was only
Fig. 4 Sliced micro-CT images of the UV-irradiated fabric. The inset

numbers are the distance from the UV-irradiated hydrophilic fabric

surface to the slice.
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Fig. 5 a) The surface water contact angles of the polyester fabrics after

different irradiation periods. b) The minimum pressure required for water

to break through the polyester fabrics. The contact angles on the UV-

irradiated surface and the breakthrough pressure for the sample shown in

(Fig. 3 & 4) have been marked by * in the figures.
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2 cmH2O for water transport through the same fabric from the

hydrophobic to the hydrophilic side (i.e., the opposite direction). This

clearly indicates a strong propensity for unidirectional water transfer

through the TiO2-silica-coated and UV-treated polyester fabric. For

comparison, Pc for the uncoated pristine polyester fabric was also

measured about 2 cmH2O, and there is no fabric side-dependence or

directional effect. For the TiO2-silica-coated polyester fabric without

the UV treatment, Pc was about 22 cmH2O and no directional effect

was observed either (Fig. 5b).

Due to the difficulty in directly observing water transfer through

fabric materials, the actual directional water-transfer mechanism of

the treated fabrics has not been clear, but warrant further research.

Two possible mechanisms are proposed here. One is based on

dragging of water from hydrophobic layer towards hydrophilic pore

section. When the dragged droplet attaches to the hydrophilic pore

surface, the hydrophilic pore will draw the droplet towards the

hydrophilic section, resulting in directional water transfer. It is also

possible for water to evaporate from a droplet on hydrophobic pore

surface and condense on the hydrophilic pore section. Induced by the

hydrophilic pores, the evaporation and condensation could be
7940 | J. Mater. Chem., 2010, 20, 7938–7940
accelerated. When the high concentration of moisture bridges the

water droplet on hydrophobic side and the wetted hydrophilic pore

section, directional water transfer is triggered.

While a polyester fabric was used as the model sample in this study,

the solution coating and photochemical treatment may be a general

approach towards the development of various fabrics with such

a novel water-transfer capability. The directional water-transfer

fabrics should be able to remove sweat effectively from the body side,

which is very useful for sportswear, soldier’s clothing, and daily life

applications.
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