
Available from Deakin Research Online:

http://hdl.handle.net/10536/DRO/DU:30038982

Reproduced with the kind permissions of the copyright owner.

Copyright : 2009, Mary Ann Liebert Publishers
Abstract

The \(\alpha \)-proteobacterium \textit{Wolbachia pipientis} is a highly successful intracellular endosymbiont of invertebrates that manipulates its host’s reproductive biology to facilitate its own maternal transmission. The fastidious nature of \textit{Wolbachia} and the lack of genetic transformation have hampered analysis of the molecular basis of these manipulations. Structure determination of key \textit{Wolbachia} proteins will enable the development of inhibitors for chemical genetics studies. \textit{Wolbachia} encodes a homologue (\(\alpha \)-DsbA1) of the \textit{Escherichia coli} dithiol oxidase enzyme EcDsbA, essential for the oxidative folding of many exported proteins. We found that the active-site cysteine pair of \textit{Wolbachia} \(\alpha \)-DsbA1 has the most reducing redox potential of any characterized DsbA. In addition, \textit{Wolbachia} \(\alpha \)-DsbA1 possesses a second disulfide that is highly conserved in \(\alpha \)-proteobacterial DsbAs but not in other DsbAs. The \(\alpha \)-DsbA1 structure lacks the characteristic hydrophobic features of EcDsbA, and the protein neither complements EcDsbA deletion mutants in \textit{E. coli} nor interacts with EcDsbB, the redox partner of EcDsbA. The surface characteristics and redox profile of \(\alpha \)-DsbA1 indicate that it probably plays a specialized oxidative folding role with a narrow substrate specificity. This first report of a \textit{Wolbachia} protein structure provides the basis for future chemical genetics studies. \textit{Antioxid. Redox Signal.} 11, 1485–1500.

Introduction

\textit{Wolbachia pipientis} is one of the most successful endosymbionts yet described, infecting huge numbers of insects, spiders, mites, and filarial nematodes (31, 49). This gram-negative \(\alpha \)-proteobacterium lives inside a vacuole of host origin, mainly in reproductive tissues, where it induces a variety of host phenotypes—including feminization, cytoplasmic incompatibility, parthenogenesis, and male killing—that increase the proportion of infected females in the host population, thereby favoring \textit{Wolbachia}’s own maternal transmission (56). How \textit{Wolbachia} induces these phenotypes is the subject of intense research because \textit{Wolbachia}-induced traits can potentially be used to control insect pest populations and mosquito-borne diseases such as malaria and Dengue fever (7, 42).
generating the Wolbachia-induced host phenotypes, we decided to investigate them further.

Most studies on bacterial disulfide-forming proteins have focused on *E. coli*. In this organism, the oxidation of cysteine thiolis to disulfides is catalyzed in the periplasm by the strong oxidant EcDsbB, which is reoxidized by ubiquinone Q₈ via thiolis to disulfides is catalyzed in the periplasm by the strong oxidant EcDsbB (reviewed in ref. 43). Proofreading and repair of incorrect disulfide and dithiol forms, and an adjacent thioredoxin (TRX) fold with an active site formed from a CXXC redox motif, which can interconvert between the redox properties of disulfide isomerases such as EcDsbC and EcDsbG (25). Given the lack of encoded disulfide isomerases in *Wolbachia pipientis* wMel, we wondered whether the redox properties of *z-DsbA1* might overlap with those of disulfide isomerases.

To investigate the role of *z-DsbAs* further, we characterized the structure and function of *Wolbachia pipientis* wMel *z-DsbA1* (WD1055 in the wMel genome) and two variants that we designed to investigate the effect of (a) the Thr preceding the cis-Pro loop and (b) the second disulfide. To our knowledge, this is the first comprehensive structural and functional study of any Wolbachia protein.

Materials and Methods

Protein expression and purification

z-DsbA1 was expressed and purified as described previously (35). Mutagenesis of wt *z-DsbA1* to *z-DsbA1CA* and *z-DsbA1TV* was performed by using the QuikChange II

Table 1. Sequence Characteristics of Putative DsbA Homologues across Proteobacteria

<table>
<thead>
<tr>
<th>Taxonomic group</th>
<th>No. seqs</th>
<th>No. genera</th>
<th>No. species</th>
<th>Res range of pred. mature proteins</th>
<th>X of CXHC motif</th>
<th>Residue before cisPro⁵</th>
<th>Additional conserved residues¹</th>
<th>Name</th>
</tr>
</thead>
<tbody>
<tr>
<td>z-Proteobacteria</td>
<td>60</td>
<td>34</td>
<td>57ᵃ</td>
<td>196–282ᵃ</td>
<td>P/A/V/G/S/M/Y/T</td>
<td>T</td>
<td>I/L/V–10, Y/E–5, S/A–3, V/I–16, R/K–26, C+43–45, C+92–105</td>
<td>z-DsbA</td>
</tr>
<tr>
<td>γ-Proteobacteria</td>
<td>60</td>
<td>33</td>
<td>51ᶜ</td>
<td>197–223ʲ</td>
<td>P/Q/V/G/I/T</td>
<td>Vʰ</td>
<td>L/V–8, E–6, F–5, I/V–+120, γ–DsbA</td>
<td>V/L–+150</td>
</tr>
</tbody>
</table>

⁵Residue preceding V cisPro or TeicPro: *z*-DsbAs, A/S/G; *β*-DsbAs, G/S; *γ*-DsbAs, G/S (see also); *ε*-DsbAs, G

²Residue preceding V cisPro or TeicPro: *z*-DsbAs, A/S/G; *β*-DsbAs, G/S; *γ*-DsbAs, G/S (see also); *ε*-DsbAs, G

³Across the *γ*-proteobacteria, we found three DsbA homologues with an ATP cisPro loop and six DsbA homologues with a GTP cisPro loop.

⁴N-termini originate from the genus *Campylobacter*, their high sequence identities indicate recent speciation/duplication. Altogether, 23 additional conserved residues were found for the *z*-DsbAs, but only those near the CXHC or cisPro loop are shown here.

For *z*-DsbAs, because they are primarily found in *z*-Proteobacteria. The *z*-DsbAs differ from *γ*-DsbAs, characterized by the *γ*-proteobacterial *E. coli* EcDsbA, in that *z*-DsbA sequences are generally longer (~196–282 residues compared with ~197–223 residues) and have four rather than two conserved cysteines (Table 1). The high degree of conservation of the two additional cysteines in the *z*-DsbAs sequences suggested that they might form a second disulfide. Furthermore, we found that the residue preceding the conserved proline in the cisPro loop is an invariant Thr in *z*-DsbAs, whereas in *γ*-DsbAs like EcDsbA, this residue is a highly conserved Val (Table 1). Curiously, a Thr at this same position is characteristic of disulfide isomerases such as EcDsbC and EcDsbG (25). Given the lack of encoded disulfide isomerases in *Wolbachia pipientis* wMel, we wondered whether the redox properties of *z-DsbA1* might overlap with those of disulfide isomerases.
Table 2. Primers Used for the Mutagenesis of Wolbachia zDsbA1

<table>
<thead>
<tr>
<th>Primer</th>
<th>Mutation</th>
<th>Sequence (5'-3'), mutation site is underlined, and the mutated bases shown in bold</th>
</tr>
</thead>
<tbody>
<tr>
<td>WCA1F</td>
<td>C97A</td>
<td>CTGCAATGCCTAAGTCATGCTACGAAAAACAAGAGAG</td>
</tr>
<tr>
<td>WCA1R</td>
<td>C97A</td>
<td>TTTCTTCTTTCGTAGGCCCATGCTAGTCGAGCAG</td>
</tr>
<tr>
<td>WCA2F</td>
<td>C146A</td>
<td>GATGCAATTATACACGGTCAATTAGTATAAGAAATATGC</td>
</tr>
<tr>
<td>WCA2R</td>
<td>C146A</td>
<td>CATATTATATTATATTTAATGCTGTTAAATGCATC</td>
</tr>
<tr>
<td>WTVF</td>
<td>T172V</td>
<td>CTITGATACAGCCGTCCCATATTTTTCATCAAAGC</td>
</tr>
<tr>
<td>WTVR</td>
<td>T172V</td>
<td>GCATGCATGACAAATAATTTTATGCAGGACCAAGAC</td>
</tr>
</tbody>
</table>

Site-Directed Mutagenesis Kit (Stratagene, La Jolla, CA). For z-DsbA1CA, both cysteine residues of the second disulfide were changed to alanine (C97A and C146A). For z-DsbA1TV, the mutation T172V was made to the residue preceding the cisPro. Primers used are listed in Table 2. The presence of desired mutations was confirmed by DNA sequencing. Constructs were transferred into BL21(DE3)pLysS for overexpression purposes (35). For crystallization, proteins were oxidized with 1.7 mM copper(II)(1,10-phenanthroline)₃ (Cu(II)Phen₃) and concentrated to 11 mg/ml. Selenomethionine (SeMet) z-DsbA1 was prepared by using methods described previously (34).

Redox parameters

The pKₐ value of the nucleophilic active site cysteine was determined by a thiolate-specific increase in absorbance at 240 nm after formation of the thiolate anion (45). Measurements were carried out at room temperature (RT) in 10 mM Tris, 10 mM sodium citrate, 10 mM K₂HPO₄, 10 mM KH₂PO₄, 200 mM KCl, and 1 mM EDTA, adjusted with NaOH or HCl to the respective pH. Reduced protein was prepared by incubating the sample with 10 mM DTT at RT for 30 min, and oxidized protein was prepared with Cu(II)-Phen₃. Reducing or oxidizing agents were removed by using a PD10 column (GE Healthcare, Piscataway, NJ). The initial assay volume was 2 ml and contained 20 μM protein. Absorbance of the samples was measured at 240 and 280 nm as the pH was reduced in steps of 0.2 pH units by using 0.2 M HCl. EcDsbA or EcDsbC was used as a control. For statistical purposes, three samples were measured in parallel and data averaged. The entire experiment was repeated at least twice for each protein.

The pH-dependent specific absorbance of the thiolate anion was measured and corrected for volume increase and buffer absorbance ((A₄ₒ₄₀/Å₄₈₀획)/(Å₄ₒ₄₀/Å₄₈₀(State))). The pKₐ value was calculated by fitting the data to the Henderson-Hasselbalch equation:

\[
\text{pH} = \text{pK}_a = \log \left(\frac{[A_{240}/A_{280}]_{\text{red}}}{[A_{240}/A_{280}]_{\text{oxid}}} \right)
\]

Measurement of the redox potential of z-DsbA1 and variants was performed in the presence of different ratios of oxidized (GSSG) and reduced (GSH) glutathione (0–10 mM total glutathione). Protein samples (1 μM) were incubated for 24 h at RT in 100 mM phosphoric acid/NaOH, 1 mM EDTA pH 7 and different ratios of GSH/GSSG. The change in fluorescence intensity by using an excitation wavelength 280 nm was measured at the maximum emission wavelength (330 nm) by using a fluorescence spectrophotometer (Photon Technology International, Seefeld, Germany).

Redox potentials were calculated by using the Nernst equation and the glutathione standard potential (E°ₐₕ = −240 mV):

\[
E^{\circ} = E^{\circ}_{\text{GSH/GSSG}} - (RT/nF) \ln K_{eq},
\]

where RT is the product of the gas constant and the absolute temperature, n is the number of electrons transferred, and F is the Faraday constant. The equilibrium constant Kₑₒq was estimated according to the equation:

\[
Y_{obs} = \frac{Y_{ox} + (M/K_{eq})Y_{red}}{[1 + (M/K_{eq})]}
\]

where Y₀ₓ is the fraction of reduced protein at equilibrium, Yₓₒ and Yᵣₑd are the signals for the oxidized and reduced proteins, respectively, and M is the ratio of [GSH]² to [GSSG].

Biochemical assays

We used an in vitro ubiquinone reduction assay to determine whether z-DsbA1 and variants were substrates of EcDsbB. Reduced protein (15 μM) in 50 mM Na-phosphate, 300 mM NaCl, 0.1% (wt/vol) N-dodecyl-maltoside at pH 6 was added to 15 μM ubiquinone 1 (Q1) (Sigma-Aldrich, Castle Hill, NSW, Australia) in the same buffer, and the reaction was started with the addition of 0.1 μM reduced EcDsbB (3). The reduction of Q1 was followed via the absorbance change at 275 nm. EcDsbA was used as a positive control. In vitro disulfide reductase activity of z-DsbA1 was measured by the ability of the protein to catalyze the reduction of insulin by DTT, as described previously (26). The reaction mixtures were freshly prepared in 1-ml cuvettes by adding final concentrations of 0.13 mM insulin (Sigma), 0.33 mM DTT, 0.1 M sodium phosphate, pH 7, and 2 mM EDTA to various concentrations of the catalyst (4–10 M). The reduction of insulin was monitored by measuring the optical density of the samples at 650 nm for 80 min at 30-s intervals.

The ability of the protein to isomerize disulfide bonds was evaluated by using the scrambled-RNaseA (ScRNaseA) assay. Disulfide-scrambled RNaseA was produced as follows. Native RNaseA (Sigma) was incubated overnight at room temperature in 50 mM Tris-HCl, pH 8, in the presence of 6 M GdmCl and 150 mM DTT. The reduced, unfolded protein was acidified with 100 mM acetic acid/NaOH, pH 4, and purified over a PD10 column. The RNaseA concentration was determined spectrophotometrically, and the eight free thiol groups were verified by using Ellman’s assay. To generate RNaseA with randomly oxidized disulfides (scRNaseA), reduced RNaseA was diluted to a final concentration of 0.5 mg/ml in 50 mM Tris-HCl, pH 8.5, and 6 M GdmCl and incubated in the
dark at room temperature for at least 3 days. The randomly reoxidized RNaseA was concentrated, acidified, and purified, as described earlier, and oxidation of disulfide bonds was confirmed by using Ellman’s assay. Isomerase activity of test proteins was evaluated by measuring spectrophotometrically the renaturation of scRNaseA. Reactivated RNaseA with native disulfide bridges can cleave cyclic-2',3'-cytidinemonophosphate (cCMP) into 3'-cytidinemonophosphate (3'CMP), resulting in an increase in absorbance at 296 nm. Purified z-DsbA1 or variants (10 μM) were added to 100 mM sodium phosphate, 1 mM EDTA, and 10 μM DTT, pH 7, and pre-incubated for 5 min at 25°C. To start the assay, 40 μM scRNaseA was added. At several time points, 200 μl aliquots were taken and added to 600 μl of 4 mM cCMP (in 100 mM sodium phosphate, 1 mM EDTA, pH 7), so that the final assay volume was 800 μl. The rate of RNaseA cleavage in the removed aliquots was then monitored spectrophotometrically at 296 nm for 2.5 min, and the fraction of native RNaseA (percentage) was plotted against the incubation time.

Thermal denaturation of z-DsbA1 and variants was determined as described previously (25). Thermal unfolding was monitored at 220.5 nm on a Jasco J-810 spectropolarimeter: 10 μM samples in sodium phosphate buffer, pH 7, were heated from 25°C to 95°C at a constant rate of 1°C/min. Data were normalized by correcting for pre- and posttransitional baselines, and the thermal transition was tentatively fitted according to a two-state model.

EcDsbA complementation

To determine whether z-DsbA1 and the two variants could complement EcDsbA, we cloned the z-dsbA1 gene and variants, including the Wolbachia signal sequence, into the arabinoase-inducible pBAD33 vector (20). The constructs were chemically transformed into the nonmotile E. coli dsbA– mutant (JCB817) and plated on LB chloramphenicol plates. Additionally, we tested the ability of wt and variant z-DsbA1s to complement EcDsbA in the absence of EcDsbB, by chemically transforming the E. coli dsbA+/dsbB double mutant (JCB818). To exclude the possibility that complementation of EcDsbA was impaired by failure to export wt or variant z-DsbA1s, constructs also were prepared in which an E. coli DsbA signal sequence replaced the Wolbachia signal sequence. As a positive control, we used JCB817 and 818 cells harboring pBAD33::EcDsbA. Triplicates of fresh colonies were transferred to minimal agar (M63) containing 40 μg/ml of each amino acid (except tryptophan, which was at 20 μg/ml); arabinose was included at 1 mg/ml to induce expression. Additionally, the experiment was performed by using agar without arabinose to monitor background complementation. The experiment also was performed in the absence and presence of l-cystine to see whether it could act as a general oxidant for z-DsbA1. Plates were incubated for 7–10 h at 37°C before analysis of the diameter of the bacterial lawns.

Structure determination

Crystals of z-DsbA1 and SeMet z-DsbA1 were prepared as described previously (34). Isoformorphous crystals of the two variants were obtained by using similar conditions, after 2 days in 22% PEG 3350, 0.1 M ammonium citrate, pH 5.5–5.9. The structure of wt z-DsbA1 was solved with MAD phasing. Native and MAD data were measured at beamline 8.3.1 of the Advanced Light Source (Berkeley, CA). For the two variants, diffraction data were measured by using a high-brilliance FR-E X-ray generator and an R-AXIS IV++ imaging plate detector. All crystals were soaked for ~5 min in a cryoprotectant comprising the crystallization solution plus 20% PEG 400.

Data for the wt and SeMet proteins were processed by using HKL2000 (46). SeMet positions were located by using SOLVE/RESOLVE (51), and the phased electron-density map was used for automatic model building with ARP/WARP (44). Manual model building was performed by using COOT (13), and the structure was refined first with CNS (8) and then with PHENIX, including TLS refinement (1). The structure of wt z-DsbA1 includes residues 20 to 218 of the mature 218 residue protein, with one molecule in the asymmetric unit. No density was observed for the N-terminal 19 residues or the octa-His affinity tag. Where appropriate, residues were modelled with alternate conformations, and side chains of residues with weak density were modelled with reduced occupancy. For z-DsbA1TV and z-DsbA1CA, diffraction data were processed with CrystalClear 1.3 (Rigaku Americas, Houston TX), and the structures were solved with difference Fourier methods from the native z-DsbA1 structure. The final structures include residues 20 to 218 for z-DsbA1TV and 19 to 218 for z-DsbA1CA. Two PEG molecules are bound in the wt and CA variant structures; one at the active site, and one in a groove on the helical domain. In the TV mutant, the active-site PEG is present, but evidence for the second PEG is less convincing, and this region is instead modelled as a series of waters.

MolProbity (11) was used to assess the quality of the crystal structures. SSF (33) was used to compare z-DsbA1 with other TRX-fold structures. Structural figures were generated by using PyMOL (Warren L. DeLano, The PyMOL Molecular Graphics System, http://www.pymol.org) and APBS (4). Torsional energies of disulfides were estimated by interpolation of a potential-energy surface calculated for diethyl disulfide around its three critical dihedral angles corresponding to disulfide dihedral angles χ', χ'', and χ'''. At 10-degree increments. Quantum chemical calculations were performed at the MP2 level of theory (21). Contributions of χ', χ'', and χ''' were estimated by using terms from a torsional potential-energy function from AMBER (47).

The coordinates and structure factors for wt and TV and CA variants of z-DsbA1 structures have been submitted to the PDB with accession codes 3F4R, 3F4S, and 3F4T, respectively.

Results

z-DsbA1 is less oxidizing than EcDsbA

Previously, we showed that z-DsbA1 is an oxidoreductase on the basis of its activity in two standard assays for thiol-disulfide oxidoreductase activity (35). Here we characterized z-DsbA1 further and found that its redox properties are different from those of EcDsbA (Table 3). First, it is less oxidizing than EcDsbA (its redox potential is ~163 mV compared with ~122 mV for EcDsbA), and the pKθ of its nucleophilic cysteine (presumed to be Cys51 on the basis of sequence and structure conservation with all other TRX-fold proteins) is more than one pH unit higher than that of EcDsbA (~5 compared with ~3.3) (Table 3). Further, z-DsbA1—unlike EcDsbA—has a second disulfide bond, although this appears to have little influence on the redox properties of the enzyme (see our analysis of the z-DsbA1 CA variant later).
an amino acid cross-linking approach (Fig. 3). The absence of the
hydrophobic groove in z-DsbA1 may explain the lack of interaction
between z-DsbA1 and EcDsbB in the in vitro results described
in Table 3.

z-DsbA1 does not complement EcDsbA deficiency and
is not a substrate of EcDsbB

We evaluated whether z-DsbA1 catalyzes disulfide for-

mation in Escherichia coli in vivo by determining whether it complements EcDsbA in dsbA- and dsbA/dsbB-null back-
grounds. EcDsbA is not essential for cell viability, but its de-
letion in E. coli leads to pleiotropic phenotypes. One such
phenotype is the loss of functional flagellae, resulting in loss of
motility on soft agar plates. We found that z-DsbA1 did not
complement either dsbA- or dsbA/dsbB-null strains (Fig. 1).

Further, we found that unlike EcDsbA, z-DsbA1 is not a
substrate of EcDsbB (Table 3, Fig. 2E).

z-DsbA1 has a DsbA-like architecture

We solved the crystal structure of z-DsbA1 by MAD

methods and refined it to a resolution of 1.6 Å, with R-factor
and R-free values of 16.5% and 19.3%, respectively (Fig. 3,
Table 4). The z-DsbA1 structure comprises two domains, a
TRX-fold (residues 20 to 82 and 163 to 218) and an inserted
helical domain (residues 83 to 162), so that the architecture
is broadly similar to that of EcDsbA (17). However, the topology
of z-DsbA1 diverges from that of EcDsbA, in that the N-
terminal strands of the two proteins are hydrogen bonded to
opposite edges of the central β-sheet (Fig. 3). Further, the
structures of z-DsbA1 and EcDsbA do not superimpose well,
with an RMSD of 3.1 Å for 143 of the 199 Cα atoms. To some extent,
this poor match is a consequence of different relative orienta-
tions of the two domains, because matches between the
isolated TRX and helical domains of the two proteins are
somewhat better (2.4 Å/70 Cα and 1.9 Å/61 Cα, respectively).

Nonetheless, z-DsbA1 has features that appear to be unique
among structurally characterized DsbAs.

The characteristic surface features of EcDsbA and DsbAs

from Vibrio cholerae (TcpG) (27) and Neisseria meningitidis
(NmDsbA3) (54) include a hydrophobic groove and a hy-
drophobic loop (Fig. 3) thought to be important for binding
unfolded protein substrates (41). The hydrophobic groove
of EcDsbA also interacts with a periplasmic loop of its
redox partner EcDsbB (29). The surface features of z-DsbA1
differ markedly from these. Most important, the surface is
basic rather than hydrophobic: many residues contributing to
the hydrophobic patch of EcDsbA are replaced by polar or
charged residues in z-DsbA1 (Fig. 3). Moreover, as a conse-
quency of the shorter loop between β5 and z7 in z-DsbA1
compared with EcDsbA, no hydrophobic groove is present on
the surface of z-DsbA1 (Fig. 3). The absence of the hydro-
phobic groove in z-DsbA1 may explain the lack of interaction
between z-DsbA1 and EcDsbB in the in vitro results described

![FIG. 1. EcDsbA and EcDsbA/EcDsbB in vivo complementation assays. In vivo complementation of the motility of an E. coli dsbA null mutant (JCB817) and an E. coli dsbA/dsbB null mutant (JCB818). Two different constructs of z-DsbA1 were tested. Construct 1 contains the W. pipientis signal sequence and construct II the EcDsbA signal sequence prior to z-DsbA1 (cloned into the pBAD33 vector). Shown are unin-
duced (no arabinose to monitor background complementation, negative control) and induced plates (containing arabinose). As a positive control, we used JCB817 cells harboring pBAD-D33::EcDsbA (JCB817a). To assess DsbA complementation we evaluated restoration of E. coli motility as the presence of a halo of growth around the point at which the cells were
stabbed in the agar, as seen in the induced positive control JCB817a. z-DsbA1, and the two variants (not shown), did not complement either strain in any of the conditions tested.](image-url)
earlier, because this groove is important for the interaction between EcDsbA and EcDsbB (29).

x-DsbA1 structure is more similar to SaDsbA than to EcDsbA

To identify closer structural matches to x-DsbA1 than to EcDsbA, we performed an alignment by secondary structure matching by using SSM (33) against the entire PDB. Only one statistically significant structural similarity (P score >3.0) was identified (Table 5): a conserved protein of unknown function from the gram-positive organism *Enterococcus faecalis* EF3133 (PDB code, 1Z6M). Other matches were 2IMF, a κ-class glutathione S-transferase [the structural relation between κ-GSTs and DsbA has been noted previously (14)]; 3BCI, the DsbA from the gram-positive organism *Staphylococcus aureus* (SaDsbA) (25); and 2IN3, a putative protein disulfide isomerase (PSI) from the gram-negative β-proteobacterium, *Nitrosomonas europaea*. Neither 1Z6M nor 2IN3 has been reported in the literature, but their architecture of a TRX fold with an inserted four-helix domain, and the presence in each of a CXXC motif and a cisPro loop suggest that both are redox active (Table 5). Surprisingly, the highest sequence identity was with a DsbA from a gram-positive organism, SaDsbA: 21% overall and 25% for residues in the TRX fold. However, the redox properties and enzyme activities of x-DsbA1 and SaDsbA are very different (Table 5).

The structural similarity between x-DsbA1 and proteins of the κ-class of GSTs prompted us to investigate whether x-DsbA1 has GST activity, but we were unable to detect GST activity for x-DsbA1, even at very high concentrations (20 μM) of the protein (Fig. 4).

The catalytic disulfide of x-DsbA1 is strained

Redox activity of TRX-fold proteins is mediated by the CXXC active-site motif, located at the N-terminus of helix z1, where the two cysteines can interconvert between di-thiol and disulfide forms; x-DsbA1 has the sequence C51YHC54. Although x-DsbA1 crystals were grown from oxidized protein, the electron density suggests a mixture of oxidized and reduced forms for the catalytic disulfide, and the structure was modelled as a mixture of both. Reduction of redox-active disulfides commonly occurs as a result of radiation damage (2, 55) and has been observed, for example, in SaDsbA (25) and yeast PDI (53). It is noteworthy that the second disulfide bond of x-DsbA1 remains oxidized in the crystal structure, indicating that it is resistant to reducing conditions and is not redox active.

Conformational analysis of the disulfide of oxidized x-DsbA1 indicates a high torsional energy (19.5 kJ/mol or 4.5 kcal/mol), mainly due to χ2 of the reactive Cys51 and χ3, the torsion angle about the disulfide bond between Cys51 and Cys54, which are both two standard deviations from normal. χ1 of Cys54 the resolving cysteine is also in an unusual conformation (−46 degrees), one standard deviation from normal. On disulfide reduction, most of this strain is lost, with only χ2 of Cys51 adopting a slightly strained conformation (−165 degrees) one standard deviation from normal. Similar oxidized and reduced conformations are present in other TRX-fold redox proteins, suggesting that disulfide torsional strain is a common feature of these proteins.

We also investigated interactions that might help stabilize the nucleophilic cysteine of x-DsbA1 and contribute to its low pKs. We found that the Sc atom of reduced Cys51 is within hydrogen-bonding distance of the Sc and main-chain nitrogen of Cys54 (Table 6); similar interactions are observed in other TRX-fold redox proteins (5, 23). In addition, Cys54 Sc is within hydrogen-bonding distance of the side-chain hydroxyl of Thr172, although we know from our mutation data that this residue contributes little to the reduced pKs of Cys51 (Table 3, Fig. 2A). The very basic surface surrounding the redox-active site may contribute to a low pKs for Cys51.

FIG. 2. Characterization of x-DsbA1, x-DsbA1TV, and x-DsbA1CA. (A) pKs determination of the nucleophilic cysteine of x-DsbA1 (○, grey curve), x-DsbA1TV [△, black curve (overlays on grey curve)], and x-DsbA1CA (■, dashed curve). The pH-dependent specific absorbance signal of the protein (Fig. 4). The ratio of reduced x-DsbA1 and variants was measured by using the specific fluorescence intensity of the protein at 330 nm with an excitation wavelength of 280 nm. (C) Catalyzed reduction of insulin by DTT. Reduction of insulin (131 μM) was measured in 0.1 M sodium phosphate buffer, pH 7, 2 mM EDTA. The reaction was performed in the absence (○) or presence of 4 μM EcDsbC (■), 10 μM EcDsbA (●), 10 μM x-DsbA1 (○), 10 μM x-DsbA1TV (□), or 10 μM x-DsbA1CA (△). Reactions were started by adding DTT to a final concentration of 0.35 mM, and the aggregation of reduced insulin was followed by the increase in optical density at 650 nm. (D) The in vitro isomerase activity was assessed by using the scrambled RNaseA (scRNaseA) refolding assay. In brief, scRNaseA enzyme (40 μM) was incubated in 0.1 M sodium phosphate buffer, pH 7.0, 1 mM EDTA, 10 μM DTT in the absence (*, negative control) or presence of 10 μM DsbC monomer (■), 10 μM αDsbA1 (○), 10 μM αDsbA1TV (□), or 10 μM αDsbA1CA (△). RNaseA activity was assayed by monitoring cCMP hydrolysis spectrophotometrically at 296 nm. As a positive control, we performed additional reactions with folded RNaseA, which was normalized to 100% RNaseA activity. The fraction of native RNaseA (in percentage) activity were calculated and plotted against incubation time. (E) EcDsbB-catalyzed reduction of ubiquinone (Q1) by reduced DsbB proteins. The ability of 15 μM of reduced EcDsbA (●), EcDsbC (●), or x-DsbA1 (○), to reduce 15 μM Q1 was evaluated. The reaction was initiated with addition of 0.1 μM EcDsbB (arrow) and monitored via the decrease in absorbance at 275 nm. EcDsbA was able to reduce Q1 with an initial velocity of 190 mM/min/mM EcDsbB, whereas x-DsbA1 and variants proved not to be EcDsbB substrates. (F) Thermal denaturation data for x-DsbA1CA in 0.1 M sodium phosphate buffer, pH 7. Plots are shown for oxidized (■) and reduced (□) x-DsbA1CA. The oxidized redox-active site destabilizes the structure of x-DsbA1CA compared with the reduced form, as evidenced by the shift to the left of the oxidized form. The melting temperature Tm of oxidized x-DsbA1CA is 330.7 ± 0.05 K, and that of reduced x-DsbA1CA is 336.9 ± 0.5 K. Similarly, oxidized EcDsbA is also less stable than reduced EcDsbA (Tm values of 342.4 ± 0.05 and 350.6 ± 0.52 K, respectively) (25).
α-DsbA1 has a flexible cisPro loop

The second conserved feature of redox-active TRX-like proteins is the cisPro loop, which is close in space but distant in sequence from the redox-active CXXC site, and which is involved in substrate interactions (32, 37, 39). A Thr precedes the cisPro residue of isomerases EcDsbC and EcDsbG. The hydrophilic nature of this residue and its proximity to the nucleophilic cysteine is thought to be important for Dsb isomerase activity (5, 23). By comparison, the residue...
preceeding the cis-Pro in EcDsbA is Val. Our analysis of proteobacterial DsbAs found that Val is highly conserved at this position in γ-proteobacterial DsbAs, like EcDsbA, whereas it is an invariant Thr in x-proteobacterial DsbAs (Table 1).

We anticipated that z-DsbA1 Thr172 would form interactions similar to those observed in the Dsb isomerases. Unexpectedly, we found considerable differences in this region compared with other TRX-fold proteins. First, we observed flexibility in the cis-Pro loop so that two conformations were modelled for residues 171 through 174 (Fig. 5). Second, the residues T172GSP173 are translated in space with respect to the CXXC active sites of other TRX-fold proteins, so that Thr172 hydroxyl is closer in space to the second cysteine of the CXXC active site (Cys51) than to the nucleophilic cysteine (Cys51) (Table 6). In other TRX-fold proteins with a Thr at this position (EcDsbC, EcDsbG, SaDsbA), the equivalent Thr is located closer in space to the nucleophilic cysteine (Fig. 5) and contributes to the redox properties (48).

Thr172 modulates redox activity

To investigate whether Thr172 might contribute to redox activity and the observed mobility of the cis-Pro loop in z-DsbA1, we mutated it to the EcDsbA-like residue Val (z-DsbA1TV). The crystal structure of z-DsbA1TV, determined to 1.55Å resolution, revealed the cis-Pro loop to be less mobile than that of the wt protein: a single conformation for residues 171 through 174 was sufficient to fit the electron density (Fig. 5), confirming a role for Thr172 in loop flexibility. The mutated Val172 side chain adopts a different conformation to that of Thr172 in the wt protein: it is more like that of other Dsb structures, rotated away from the active-site cysteines, and closer to the nucleophilic Cys51 (Fig. 5 and Table 6). These structural changes are accompanied by a decrease in the redox potential from −163 to −170 mV in the z-DsbA1TV variant (Table 3). Interestingly, z-DsbA1TV is more active than wt z-DsbA1 in the insulin-reduction assay, but it is a poorer isomerase (Table 3). These results confirm the role of the residue preceding the cis-Pro in the redox properties and substrate interactions of TRX-fold family of proteins (48).

Like the wt protein, z-DsbA1TV does not interact with EcDsbB in vitro, it does not complement EcDsbA in vivo, and it has no GST activity (Figs. 1, 2E, and 4).

z-DsbA1 has a second disulfide

We predicted on the basis of their conservation in z-DsbA sequences (Table 1), that Cys97 and Cys146 would form a second disulfide bond in z-DsbA1. The crystal structure of z-DsbA1 confirms this prediction, showing that the Cys97-Cys146 disulfide links the C-termini of two helices (z2 and z5) in the helical domain (Figs. 3 and 6). Unlike the active-site disulfide, no evidence exists of x-ray–induced reduction of this disulfide either in wt z-DsbA1 or in z-DsbA1TV structures, suggesting that this disulfide is resistant to reduction. However, analysis of this disulfide indicates that Cys97 adopts a low-probability rotamer conformation. Consequently, the disulfide has a high predicted torsional stress (27 kJ/mol, or 6.3 kcal/mol).

Disulfides that introduce local stress in folded proteins may have functional rather than structural roles (57). To investigate this possibility, we mutated both Cys97 and Cys146 to alanine (z-DsbA1CA) and characterized this variant. Little difference was noted in the overall fold of the variant structure compared with wt z-DsbA1. However, the main-chain oxygen of Ala142 is oriented differently in the wt and z-DsbA1CA variant, presumably because of steric constraints imposed by the disulfide (Fig. 6).

The z-DsbA1CA variant allowed analysis of the effect of the active-site disulfide on the stability of the protein. We found that like EcDsbA, and unlike most protein disulfides, the active-site disulfide of z-DsbA1 is destabilizing (Fig. 2F). The pKₐ of the nucleophilic cysteine of z-DsbA1CA is a little higher than that of wt (pKₐ, 5.0 and 4.65, respectively), but otherwise, the redox parameters and activities of z-DsbA1CA are similar to those of wt z-DsbA1 (Table 3; Figs. 1, 2, and 4).

Discussion

Strong oxidants like EcDsbA have high redox potentials (−122 mV) and low equilibrium constants for forming

FIG. 3. Structure of z-DsbA1 and comparison with EcDsbA. (A) Ribbon representation of z-DsbA1 and EcDsbA (19, 41). Both z-DsbA1 and EcDsbA have a catalytic TRX domain (green) and an inserted helical domain (blue). The active-site cysteines and the additional cysteine pair of z-DsbA1 are shown as yellow spheres. (B) Topology of the TRX folds of z-DsbA1 and EcDsbA. z-Helices are shown as rectangles, and β-strands, as arrows. The architecture of the TRX fold (black) consists of an N-terminal βαβ and a C-terminal βαz motif connected by an α-helix (40). The inserted z-helical domains of z-DsbA1 and EcDsbA (formed from four helices and an extension to helix z6 and comprising 68 and 65 residues, respectively) is indicated by a blue box. Departures from the common TRX-fold are shown in green. The locations of the active-site redox cysteines and the additional cysteine pair of z-DsbA1 are shown by yellow circles, and the cis-Pro loop, by a red circle. The topologies of the two proteins diverge at the N-terminus: the N-terminal β-strand (β1) of z-DsbA1 and EcDsbA are positioned at opposite edges of the β-sheet, and z-DsbA1 has a short helix (z0) preceding this strand. (C) Electrostatic surfaces of z-DsbA1 and EcDsbA. Red indicates negatively charged (−5kT) and blue positively charged regions (±5kT). Uncharged surfaces are shown in white. The PEG molecule bound near the redox-active site of z-DsbA1 is shown (green spheres). The position of the nucleophilic cysteine in both structures is denoted by “S.” The second disulfide of z-DsbA1 is on the opposite surface of z-DsbA1 (not shown). The surface of z-DsbA1 is very basic and lacks the characteristic hydrophobic groove and hydrophobic patch surrounding the active site of EcDsbA and other structurally characterized γ-proteobacterial DsbAs. (D) Structure-based sequence alignment of z-DsbA1 and EcDsbA. Secondary structure elements of z-DsbA1 are depicted as rectangles for helices and arrows for strands, and are labelled and underlined for EcDsbA. No electron density was observed for the N-terminal z-DsbA1 residues shown in grey. The redox-active site, the cis-Pro loop, and the second cysteine pair of z-DsbA1 are shown in red. Residues contributing to the hydrophobic surface surrounding the active site of EcDsbA are shown in magenta for the hydrophobic patch and green for the hydrophobic groove. Residues contributing to the basic surface surrounding the active site of z-DsbA1 are shown in blue. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article at www.liebertonline.com/ars).
disulfides with glutathione \((K_{eq} = 0.12 \pm 0.05 \times 10^{-3} \text{M}) \) (15, 28). By contrast, disulfide reductants like EcTRX have low redox potentials \[E^{\circ} = -271 \text{ mV} \sim -284 \text{ mV} \] and high equilibrium constants \([K_{eq} = 10 \text{ M}] \) (38)]. The oxidizing power of EcDsbA is thought to originate from two interrelated factors: an unusually low \(pK_a \) of 3.3 for the reactive cysteine Cys30 of EcDsbA (28) compared with the more usual value of \(\sim 9 \) for a cysteine thiol (52), and greater energetic stability of reduced DsbA over the oxidized form (59). In comparison, the \(pK_a \) value for the nucleophilic cysteine of EcTRX is \(\sim 7 \), and the active site of EcTRX is in the reduced form at physiologic pH (10).

Here we focused on \textit{Wolbachia pipiensis} wMel DsbA, or \(\alpha \)-DsbA1, to our knowledge the first \textit{Wolbachia} protein and the first \(\alpha \)-proteobacterial DsbA crystal structure to be reported. We showed that \(\alpha \)-DsbA1 differs significantly in its structure and function from EcDsbA. First, although it has similar isomerase and reductant activities to those of EcDsbA in standard assays, \(\alpha \)-DsbA1 is much less oxidizing, with a redox potential \(40 \text{ mV} \) lower and a \(pK_a \) value for the nucleophilic cysteine \(\geq 1 \text{ pH unit} \) higher than those for EcDsbA (Table 3). Further, \(\alpha \)-DsbA1 has a second disulfide bond, and the cysteines forming the second disulfide are highly conserved in \(\alpha \)-DsbA sequences (Table 1). Serendipitously, a PEG molecule
Table 4. X-ray Crystallography Data Collection and Refinement Statistics

<table>
<thead>
<tr>
<th>Data collection</th>
<th>SeMet α-DsbA1 (MAD data)</th>
<th>wt α-DsbA1</th>
<th>α-DsbA1TV</th>
<th>α-DsbA1CA</th>
</tr>
</thead>
<tbody>
<tr>
<td>Wavelength (Å)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>0.979594</td>
<td>0.953725</td>
<td>1.1159</td>
<td>1.5418</td>
</tr>
<tr>
<td>Resolution range (Å)</td>
<td>50–1.8</td>
<td>50–1.8</td>
<td>50–1.59</td>
<td>66–1.55</td>
</tr>
<tr>
<td></td>
<td>(1.86–1.80)</td>
<td>(1.86–1.80)</td>
<td>(1.66–1.59)</td>
<td>(1.61–1.55)</td>
</tr>
<tr>
<td>Spacegroup</td>
<td>C2</td>
<td>C2</td>
<td>C2</td>
<td>C2</td>
</tr>
<tr>
<td>Unit cell: a, b, c, β (Å, Å, Å, °)</td>
<td>71.1, 49.5,</td>
<td>71.4, 49.6,</td>
<td>70.7, 49.6,</td>
<td>71.0, 49.5,</td>
</tr>
<tr>
<td></td>
<td>69.7 107</td>
<td>69.7 107</td>
<td>69.7 107</td>
<td>69.0 106</td>
</tr>
<tr>
<td></td>
<td>71.1, 49.5,</td>
<td>71.4, 49.6,</td>
<td>70.7, 49.6,</td>
<td>71.0, 49.5,</td>
</tr>
<tr>
<td>Unique reflections<sup>a</sup></td>
<td>21,545 (2,125)</td>
<td>21,596 (2,133)</td>
<td>31,005 (3,039)</td>
<td>31,734</td>
</tr>
<tr>
<td>Redundancy<sup>a</sup></td>
<td>3.8 (3.7)</td>
<td>3.8 (3.7)</td>
<td>3.5 (3.0)</td>
<td>2.9 (2.0)</td>
</tr>
<tr>
<td>Completeness<sup>a</sup></td>
<td>100 (100)</td>
<td>100 (100)</td>
<td>99.2 (97.4)</td>
<td>94.9 (62.0)</td>
</tr>
<tr>
<td>R<sub>merge</sub><sup>a,b</sup></td>
<td>0.077 (0.207)</td>
<td>0.049 (0.194)</td>
<td>0.062 (0.277)</td>
<td>0.036 (0.281)</td>
</tr>
<tr>
<td>(I<sub>σ(I)</sub>)<sup>a</sup></td>
<td>35.1 (6.9)</td>
<td>35.1 (6.3)</td>
<td>33.1 (5.8)</td>
<td>21.3 (3.0)</td>
</tr>
</tbody>
</table>

Reefinement statistics

<table>
<thead>
<tr>
<th>No. of reflections ([F] > 0.00)</th>
<th>27,388/3022</th>
<th>28,255/3151</th>
<th>18,601/945</th>
</tr>
</thead>
<tbody>
<tr>
<td>in working set/test set</td>
<td>(899/84 for)</td>
<td>(664/86 for)</td>
<td>(2,566/117 for)</td>
</tr>
<tr>
<td>R<sub>merge</sub> =<sup>c</sup></td>
<td>1.61–1.59 Å</td>
<td>1.57–1.55 Å</td>
<td>1.95–1.85 Å</td>
</tr>
<tr>
<td>R<sub>factor</sub> =<sup>d</sup></td>
<td>16.5/19.3</td>
<td>15.1/19.4</td>
<td>17.2/21.0</td>
</tr>
<tr>
<td>Ramachandran plot favoured/allowed regions (%)</td>
<td>98.4/1.6</td>
<td>99.1/0.8</td>
<td>98.6/1.4</td>
</tr>
<tr>
<td>No. of atoms</td>
<td>All/nonsolvent/solvent</td>
<td>2,087/1,821/266</td>
<td>2,023/1,774/249</td>
</tr>
<tr>
<td>Average B factor (Å<sup>2</sup>)</td>
<td>All/nonsolvent/solvent</td>
<td>27.2/25.0/41.9</td>
<td>30.0/27.7/45.4</td>
</tr>
<tr>
<td>Wilson B</td>
<td>20.8</td>
<td>23.4</td>
<td>26.8</td>
</tr>
</tbody>
</table>

*Values in brackets refer to the outermost resolution shell. *^aR_{merge} =^c Σ_{hdk} |I_{hdk}−_i|_i/|^dR_{factor} =^d Σ_{hj} |F_o−_j|_j/|^cR_{factor} =^c Σ_{hj} |F_o|_j/^dR_{factor} =^d Σ_{hj} |F_c|_j, where |I_{hdk}_i|_i is the scaled observed intensity of the ⁱth symmetry-related observation of reflection hdk and |F_o|_j is the average intensity. *^aR_{merge} was calculated for a randomly selected 5% (α-DsbA1CA) or 10% (α-DsbA1 and α-DsbA1TV) of data omitted from refinement.
Table 5. Structural Comparison of α-DsbA1 with Other TRX-fold Proteins

<table>
<thead>
<tr>
<th>Protein</th>
<th>Possible DsbA</th>
<th>DsbAs</th>
<th>Other E. coli Dsb proteins</th>
<th>k-class GSTs</th>
</tr>
</thead>
<tbody>
<tr>
<td>Function</td>
<td>X</td>
<td>Y</td>
<td>Redox</td>
<td>VcDsbA</td>
</tr>
<tr>
<td>No. residues</td>
<td>175</td>
<td>188</td>
<td>195</td>
<td>216</td>
</tr>
<tr>
<td>PDB code</td>
<td>126M</td>
<td>2IN3</td>
<td>1FVK:A</td>
<td>1BED</td>
</tr>
<tr>
<td>All</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>RMSD (Å)</td>
<td>2.0</td>
<td>2.6</td>
<td>3.1</td>
<td>3.1</td>
</tr>
<tr>
<td>No. Cα</td>
<td>144</td>
<td>152</td>
<td>143</td>
<td>139</td>
</tr>
<tr>
<td>% id</td>
<td>17%</td>
<td>14%</td>
<td>12%</td>
<td>15%</td>
</tr>
<tr>
<td>Q-score</td>
<td>0.41</td>
<td>0.33</td>
<td>0.26</td>
<td>0.26</td>
</tr>
<tr>
<td>P-score</td>
<td>3.9</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
</tr>
<tr>
<td>TRX dom</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>RMSD (Å)</td>
<td>1.6</td>
<td>2.2</td>
<td>2.4</td>
<td>2.7</td>
</tr>
<tr>
<td>No. Cα</td>
<td>84</td>
<td>81</td>
<td>70</td>
<td>74</td>
</tr>
<tr>
<td>% id</td>
<td>18%</td>
<td>15%</td>
<td>19%</td>
<td>15%</td>
</tr>
<tr>
<td>Q-score</td>
<td>0.27</td>
<td>0.18</td>
<td>0.14</td>
<td>0.14</td>
</tr>
<tr>
<td>P-score</td>
<td>2.2</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
</tr>
<tr>
<td>Helix dom</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>RMSD (Å)</td>
<td>2.7 Å</td>
<td>2.1</td>
<td>2.0</td>
<td>1.9</td>
</tr>
<tr>
<td>No. Cα</td>
<td>68</td>
<td>71</td>
<td>70</td>
<td>61</td>
</tr>
<tr>
<td>% id</td>
<td>10%</td>
<td>13%</td>
<td>6%</td>
<td>16%</td>
</tr>
<tr>
<td>Q-score</td>
<td>0.18</td>
<td>0.21</td>
<td>0.23</td>
<td>0.18</td>
</tr>
<tr>
<td>P-score</td>
<td>0.2</td>
<td>0.6</td>
<td>0.9</td>
<td>0.1</td>
</tr>
<tr>
<td>WAT1</td>
<td>No</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
</tr>
</tbody>
</table>

*The SSM server was used to identify structural homologues of α-DsbA1 (7). The PDB files used are representative examples from the results of the SSM search. Matches were sorted by Q-score and P-score. The Q-score uses alignment length and RMSD to assess the match: identical structures have a Q-score of 1. The P-score is a function of RMSD, number of aligned residues, and number of gaps in the alignment. A P-score > 3 indicates a statistically significant match (7). The crystal structure of α-DsbA1 comprises 199 residues (residues 20 to 218). The TRX domain is formed from residues 20 to 82 and 163 to 218 (119 residues), including the core TRX-fold and additional features (α0, β1). The helical domain comprises residues 83 to 162 (80 residues). The full-length α-DsbA1 structure as well as the TRX and helical domains were compared with other structures by using SSM.

1Hypothetical protein from *Enterococcus faecalis* V583, unpublished.
2Hypothetical protein from *Nitrosomonas europa*, unpublished.
3DsbA from *E. coli* (3).
4DsbA from *Vibrio cholerae* (TcpG) (6).
5DsbA from *S. aureus* (5).
6DsbA parologue with a specific role in uropathogenic *E. coli* (2).
7DsbC from *E. coli* (9).
8DsbG from *E. coli* (4).
9DsbD from *E. coli* (11).
10DsbE from *E. coli* (10).
2-Hydroxycromene-2-carboxylate isomerase, a k class glutathione-S-transferase (GST) from *Pseudomonas putida* (13).
12-Rat mitochondrial k-GST (8).
13WAT1 is located at the active site of many TRX-fold proteins, although it is sometimes replaced by a bound substrate or ligand (e.g., α-DsbA1:PEG, 2HCCAI-GSH, rGSTK1-1-GSH) or is absent because of crystal contacts (PDB 1Z6M).
was observed bound near the second disulfide in a groove resembling a peptide-binding site (Fig. 6). The high conservation and unusual conformation of the second disulfide suggested that it might play a regulatory role. However, the α-DsbA1CA variant had redox properties similar to those of wt α-DsbA1. It is therefore not possible to determine from these data what function the second disulfide might have.

Surprisingly, the cisPro loop of wt α-DsbA1 was found to be flexible, a feature not previously observed in TRX-fold proteins. This feature is probably a consequence of an unusual interaction between the active-site cysteines and Thr172, the residue preceding the conserved cisPro. Mutation of Thr172 removes the interaction and decreases loop flexibility, supporting the notion that this residue contributes to flexibility in this region. The T172V variant is a more-active reductase than the wt enzyme but a less-active isomerase. These results are in agreement with other work showing that the residue preceding the cisPro contributes to the redox activities and substrate interactions of TRX-fold proteins (48). A Thr preceding the cisPro is a common feature of disulfide isomerases like DsbC/G (23), and cisVal in the same position is a common feature of oxidases like DsbA. We wondered whether a Thr at this position of α-DsbA1 might contribute to isomerase properties. We found that this residue does contribute to isomerase activity: mutation from Thr to Val decreases the isomerase activity of α-DsbA1.

We speculate that α-DsbA1 plays a specific role, interacting with a subset of secreted proteins. The fact that the surface surrounding the active site of α-DsbA1 is basic, unlike the hydrophobic surfaces of EcDsbA (18), NmDsbA3 (54) and TcpG (27), lends circumstantial evidence to this notion: α-DsbA1 is unlikely to interact with diverse unfolded protein substrates. Further, the lack of a hydrophobic groove explains why α-DsbA1, unlike EcDsbA (29) and NmDsbA3 (54), does not interact with EcDsbB. Indeed, its structural similarity to SaDsbA suggests that α-DsbA1, like SaDsbA (12, 25) may not require DsbB for activity.

Previously, we identified two waters, WAT1 and WAT2, located at the redox-active site of EcDsbA (19). WAT1 appears to be a conserved feature of many redox-active TRX-fold proteins; it is present in most high-resolution TRX-fold structures that we investigated (Table 5), except those in which ligands were bound or crystal contacts formed at the active site. The conservation of WAT1 in TRX-fold proteins of diverse function, from a range of organisms, and in both redox states, suggests that it plays a role in catalysis, perhaps

Table 6. Interactions of the Cys51 Thiol and the Thr172 Hydroxyl in the Active Site of α-DsbA1, Compared with the Interactions of Equivalent Residues in Other DsbA Proteins

<table>
<thead>
<tr>
<th>Distance (Å) between and</th>
<th>N</th>
<th>N</th>
<th>Sγ</th>
<th>Sγ</th>
<th>PEG/Wat1</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Cys52</td>
<td>Cy53</td>
<td>Cys53</td>
<td>Sγ</td>
<td>Cys53</td>
</tr>
<tr>
<td>wt α-DsbA1</td>
<td>3.9</td>
<td>3.6</td>
<td>3.2</td>
<td>3.2</td>
<td>3.2</td>
</tr>
<tr>
<td>α-DsbA1TV</td>
<td>4.0</td>
<td>3.7</td>
<td>3.2</td>
<td>3.2</td>
<td>3.2</td>
</tr>
<tr>
<td>α-DsbA1CA</td>
<td>4.1</td>
<td>3.9</td>
<td>3.4</td>
<td>3.3</td>
<td>3.3</td>
</tr>
<tr>
<td>EcDsbA</td>
<td>3.4–3.5</td>
<td>3.3–3.6</td>
<td>3.4–3.5</td>
<td>3.7</td>
<td>3.2</td>
</tr>
<tr>
<td>EcDsbC</td>
<td>3.8</td>
<td>3.5</td>
<td>3.2</td>
<td>3.5</td>
<td>3.2</td>
</tr>
<tr>
<td>EcDsbG</td>
<td>3.9</td>
<td>3.5–3.7</td>
<td>3.3–3.5</td>
<td>3.3–3.4</td>
<td>3.3–3.4</td>
</tr>
<tr>
<td>SaDsbA</td>
<td>3.7</td>
<td>3.5</td>
<td>3.2</td>
<td>3.2</td>
<td>3.2</td>
</tr>
</tbody>
</table>

a Or equivalent residue in EcDsbA, EcDsbC, EcDsbG, or SaDsbA.
b Or equivalent atom of Val for α-DsbA1TV or EcDsbA.
c Distances for reduced form. Ranges are given where two conformations are modelled for Thr172 or Val172.
d Distances for reduced EcDsbA (1A2L). WAT1 is not modelled in this structure because of lower resolution so WAT1 distance is from oxidized DsbA (1FVK), and the distance is therefore longer than that for the other structures.

Distances measured from reduced EcDsbA (1TJD).

Distances measured from reduced EcDsbC (1V58).

Distances measured from reduced SaDsbA (1BCI). Interaction is indirect, via a water molecule.
FIG. 5. The redox-active site of α-DsbA1. Electron density (2Fo-Fc, contoured at 1σ) at the active site of (A) wt α-DsbA1 and (B) α-DsbA1TV. The redox-active site is modelled as a mixture of reduced and oxidized cysteines in both structures. The cisPro loop is modelled in two alternate conformations for the wt structure, and a single conformation for α-DsbA1TV, although the side chain of α-DsbA1TV Val172 adopts two conformations in α-DsbA1TV. (C) The redox-active site of (left) α-DsbA1 and (right) EcDsbG (1V58), showing the different interactions formed by the equivalent Thr side chains preceding the cisPro. (D) Stereo view of the active-site structures of α-DsbA1 (left, blue) and EcDsbA (right, orange). The N-terminal hydroxyl of a PEG molecule (green C atoms) in the active site of α-DsbA1 is within hydrogen-bonding distance of Cys51. In EcDsbA, a water molecule (WAT1) is found at the equivalent position (19). WAT1 is conserved in many redox-active TRX-fold proteins (Table 5). (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article at www.liebertonline.com/ars).
acting as a general base. Conversely, the structures of ligand-bound complexes, including α-DsbA1 with PEG bound near the active site, show that WAT1 is probably displaced by incoming substrates (Fig. 5). The observed binding interactions of the two PEG molecules in this crystal structure may also provide a starting point for the design of inhibitors for chemical genetics studies. This would facilitate a novel means of investigating the role of α-DsbA1 in inducing Wolbachia phenotypes, which cannot be done currently because of the inability to transform the organism.

Taken together, our data show that although α-DsbA1 adopts the DsbA fold associated with oxidase activity, its redox properties suggest that it is a reductase/isomerase. Moreover, the basic residues surrounding the redox-active site and the lack of a hydrophobic groove nearby indicate that α-DsbA1 plays a specialized role in Wolbachia biology and that it probably has a narrow, perhaps dedicated, substrate specificity. E. coli DsbL also has basic residues surrounding the active site and plays a specific oxidative folding role in uropathogenic E. coli. However, the DsbL redox potential is very oxidizing (-95 mV) compared with α-DsbA1, suggesting that they have different redox functions (16). It is possible that α-DsbA1 might play a very different role from that of EcsDsbA and other DsbAs that catalyze oxidative folding of secreted proteins; for example, its low redox potential could give rise to antioxidant properties. We know that Wolbachia induces the expression of host antioxidant proteins in Aedes albopictus cell lines (6) as a protective mechanism. α-DsbA1 could conceivably play a role in defending Wolbachia against oxidative stress. Members of the Dsb family are induced together with antioxidant enzymes in the presence of peroxide in the cyanobacterium Synechocystis (36). We also point out that Wolbachia can only survive as obligate intracellular symbionts inside a vacuole of host origin, suggesting that secreted proteins are exported to the vacuolar compartment where the bacteria reside. Whether or not α-DsbA1 plays a role in oxidative folding of secreted proteins, the mechanisms involved in transferring proteins from the vacuole to the host cytoplasm and vice versa are as yet unknown.

Given the important role that redox-active Dsb proteins play in secretion of virulence factors in other organisms (24), the identification of substrate(s) of α-DsbA1, and those of α-DsbA2, and the development of inhibitors that target α-DsbA1 in chemical genetics experiments could help unravel the role of this protein and explain the molecular basis of reproductive host phenotypes induced by this uniquely adapted organism.

Acknowledgments
We are grateful to Prof. James Bardwell (University of Michigan, Ann Arbor, MI) for the gift of vector pBAD33 and bacterial strains. We thank Profs. Tom Alber and Nat Echolls (University of California, Berkeley, CA) for measuring native and MAD data at the Advanced Light Source, which is supported by the Director, Office of Science, Office of Basic Energy Sciences, of the U.S. Dept. of Energy under contract DE-AC02-05CH11231. We thank Karl Byriel for assistance with data collection at the University of Queensland (UQ) ROCX Diffraction facility, and Naomi Haworth (Victor Chang Cardiac Research Institute) for initial energy calculations. This work was supported by the NHMRC (Senior Research Fellowship to J.L.M.), the ARC (project grants to J.L.M., to B.H., and to S.N. and I.I.), UQ (Early Career Researcher Grant to B.H., Postdoctoral Fellowship to S.R.S.), the ETH Zürich and the Schweizer Nationalfond in the framework of the NCCR Structural Biology program (to R.G. and P.F.), and an International Postgraduate Research Scholarship (to M.K.).

Author Disclosure Statement
No competing financial interests exist.

References

FIG. 6. The second disulfide of α-DsbA1. The additional disulfide of α-DsbA1 (yellow) is located on the protein surface opposite that of the redox-active site disulfide. A PEG molecule (green) is bound near the second disulfide in a groove suggestive of a binding site. The close-up of the region shows superimposed electron-density maps (2Fo-Fc contours at 1σ) of wt α-DsbA1 (blue map, blue atoms) and α-DsbA1CA (red map, yellow atoms). The two cysteines (Cys97 and Cys146) are mutated to Ala in α-DsbA1CA: the maps confirm the mutation and also reveal a movement in the backbone oxygen of Ala142. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article at www.liebertonline.com/ars).

36. Li H, Singh AK, McIntyre LM, and Sherman LA. Differential gene expression in response to hydrogen peroxide and the
putative PerR regulon of Synechocystis sp. strain PCC 6803.
38. Conformational fluctuations coupled to the thiol-disulfide
39. transfer between thioredoxin and arsenate reductase in
41. Lin TY and Kim PS. Urea dependence of thiol-disulfide
42. equilibria in thioredoxin: confirmation of the linkage
43. relationship and a sensitive assay for structure. Biochemistry
45. Maeda K, Hagglund P, Finnie C, Svensson B, and Henriksen
46. A. Structural basis for target protein recognition by the
47. protein disulfide reductase thioredoxin. Structure 14: 1701–
49. Martin JL. Thioredoxin: a fold for all reasons. Structure 3:
51. Martin JL, Bardwell JC, and Kuriyan J. Crystal structure of the
53. McMenemy CJ, Lane RV, Cass BN, Fong AW, Sidhu M,
54. Wang YF, and O'Neill SL. Stable introduction of a life-
55. shortening Wolbachia infection into the mosquito Aedes
57. Messens J and Collet JF. Pathways of disulfide bond for-
60. Morris RJ, Perrakis A, and Lamzin VS. ARP/wARP and
62. Nelson JW and Creighton TE. Reactivity and ionization of
63. the active site cysteine residues of DsbA, a protein required
64. for disulfide bond formation in vivo. Biochemistry 33: 5974–
66. Otwonowski Z and Minor W. Processing of X-ray diffraction
68. Pearlman D, Case D, Caldwell J, Ross W, Cheatham T, De-
69. bolt S, Ferguson D, Seibel G, and Kollman P. AMBER, a
70. computer program for applying molecular mechanics, normal
71. mode analysis, molecular dynamics and free energy
72. calculations to elucidate the structures and energies of
75. Kurz M, Jarrott R, Shouldice SR, Hiniker A, Martin JL, Hers-
76. b, and Bardwell JC. Properties of the thioredoxin fold su-
77. perfamily are modulated by a single amino acid residue.
79. Riegler M and O'Neill SL. The genus Wolbachia. In: The
80. Prokaryotes, 3rd ed., edited by Dworkin M, Falkow S, Ro-
81. senberg E, Schleifer KH, and Stackebrandt E. New York:
83. Sun XX and Wang CC. The N-terminal sequence (resi-
84. dues 1-65) is essential for dimerization, activities, and peptide
85. binding of Escherichia coli DsbC. J Biol Chem 275: 22743–
86. 22749, 2000.
87. Tervilliger T. SOLVE and RESOLVE: automated structure
88. solution, density modification, and model building. J Synchro
90. Thurlkill RL, Grimsley GR, Scholtz JM, and Pace CN. pK
91. values of the ionizable groups of proteins. Protein Sci 15:
94. crystal structure of yeast protein disulfide isomerase suggests
95. cooperativity between its active sites. Cell 124: 61–
96. 73, 2006.
100. and biochemical characterisation of the oxidoreductase
101. NmdsbA3 from Neisseria meningitidis. J Biol Chem 283:
103. Weik M, Ravelli RB, Kryger G, McSweeney S, Raves ML,
105. chemical and structural damage to proteins produced by
106. synchrotron radiation. Proc Natl Acad Sci U S A 97: 623–628,
108. Werren JH and O'Neill SL. The evolution of heritable symbi-
109. onts. In: Influenential passengers: inherited microorganisms
110. and arthropod reproduction, edited by O'Neill SL, Hoffmann
111. AA, and Werren JH. Oxford, UK: Oxford University Press,
113. Wouters MA, George RA, and Haworth NL. “Forbidden”
114. disulfides: their role as redox switches. Curr Protein Pept Sci
118. Daugherty SC, Durkin AS, Kolonay JF, Nelson WC, Mo-
119. hamoud Y, Lee P, Berry K, Young MB, Utterback T,
120. Weidman J, Nierman WC, Paulsen IT, Nelson KE, Tettelin
121. H, O'Neill SL, and Eisen JA. Phylogenomics of the reproduc-
122. tive parasite Wolbachia pipientis wMel: a streamlined
123. genome overrun by mobile genetic elements. PLoS Biol 2:
125. Wunderlich M, Jaenicke R, and Glockshuber R. The redox
126. properties of protein disulfide isomerase (DsbA) of Escheri-
127. chia coli result from a tense conformation of its oxidized
129. Zapun A, Missiaakas D, Raina S, and Creighton TE. Struc-
130. tural and functional characterization of DsbC, a protein in-
131. volved in disulfide bond formation in Escherichia coli.

Address reprint requests to: Jennifer L. Martin
Institute for Molecular Bioscience
The University of Queensland
QLD 4072, Australia

E-mail: j.martin@imb.uq.edu.au and b.heras@imb.uq.edu.au

Date of first submission to ARS Central, December 23, 2008; date of final revised submission, March 1, 2009; date of acceptance, March 5, 2009.
This article has been cited by:

