Deakin Research Online

This is the published version:


Available from Deakin Research Online:

http://hdl.handle.net/10536/DRO/DU:30041737

Reproduced with the kind permission of the copyright owner.

Copyright: 2011, Cambridge University Press
JACKSON CLEMENTS BURROWS

TIMOTHY Jackson (1964–), Jon Clements (1971–) and Graham Burrows (1972–) formed the Melbourne-based Jackson Clements Burrows (JCB) in 1998. Their architecture is informed by an interest in architectural design as a continuous process, and the pragmatic but creative responses to the inevitable constraints of construction and regulation. An early project, a townhouse in McKendrick Lane, West Melbourne (2001), suggests a number of these concerns. Squeezed in behind a Victorian-era cottage, the building draws on the sheds and overgrown gardens of its surrounding landscape to inform a wedge-shaped composition of corrugated metal, polycarbonate and green translucent panels. More recent buildings similarly respond to their environments, whether rural, industrial or suburban. The Treehouse at Separation Creek (2009) on Vic.'s southern coast is largely cantilevered from a small base due to its scenic but landslip-prone site. The Hue Apartments, Richmond, Vic. (2008) respond to their semi-industrial surroundings as a singular object, whose ambiguity of scale is accentuated by street frontage treatment in which a massive sheer wall is punctuated by the apparently random placing of large circular openings of varying sizes. Ambiguity is more directly referred to in the Tyson Street Residence, Richmond, Vic. (2004). Here, the façade of the house that previously occupied the site is reproduced as a faded photographic image that fills the front wall of the new residence. As well as providing a strategic response to prescriptive planning regulations, the ghostly image effectively conceals a new residence of surprising size. Recently, JCB has been working on the larger scale of urban design, in which the firm's interest in the manipulation of context into allusive surfaces and complex spatial forms is being developed on a larger scale.

DAVID BEYNON