This is the published version:

Available from Deakin Research Online:

http://hdl.handle.net/10536/DRO/DU:30044110

Reproduced with the kind permission of the copyright owner.

Copyright : 2011, University of Auckland, Department of Mathematics
Abstract. Max-plus algebras and more general semirings have many useful applications and have been actively investigated. On the other hand, structural matrix rings are also well known and have been considered by many authors. The main theorem of this article completely describes all optimal ideals in the more general structural matrix semirings. Originally, our investigation of these ideals was motivated by applications in data mining for the design of centroid-based classification systems, as well as for the design of multiple classification systems combining several individual classifiers.

1. Introduction

Semirings have been actively investigated, because they are important in mathematics and have many useful applications, see [10, 11]. As a special example of a semiring, let us only mention the max-plus algebra, which plays crucial roles in the study of discrete event systems, see [3, 10]. On the other hand, structural matrix rings have also been considered in the literature and many interesting results have been obtained (see, for example, [5, 8, 12, 22, 23]).

The present article is devoted to the investigation of the more general structural matrix semirings. Our main theorem gives a complete description of all ideals with largest weights in structural matrix semirings. Originally our investigation of these ideals was motivated by their applications to the design of classification systems, or classifiers, considered in data mining. We refer to the monograph [24] for more information on the design of classifiers and their roles in data mining. More detailed explanations are also given in Section 2 below. In particular, special sets satisfying certain optimal properties are required for the design of centroid-based classifiers, as well as for the design of multiple classifiers combining several individual or initial classifiers, see [19, 20].

The paper is organised as follows. An overview of applications of matrix constructions for classification of data is given in Section 2 as motivation for this research. The main result of this paper is Theorem 1 in Section 3, which completely describes all ideals with largest weights in structural matrix semirings. A complete proof is given in Section 4.

2010 Mathematics Subject Classification: 16S50, 40C05, 65F30.

Key words and phrases: matrix constructions, ideals, semirings, optimization.

The first author was supported by Discovery grant DP0449469 from Australian Research Council.
The second author was supported by Queen Elizabeth II Fellowship, Discovery grant DP0211866 and Linkage grant LP0990908 from Australian Research Council. All authors were supported by a UB-Deakin collaboration grant.
2. Motivation and Preliminaries

This section contains a concise review of the main definitions required for our new theorem. We use standard notions and terminology and refer the readers to [5, 6, 7, 9, 10, 11, 13, 14, 15, 16, 17, 18, 21, 24, 26] for more detailed discussions of these concepts and examples of recent results.

The design of efficient classifiers is very important in data mining, see [24]. Max-plus algebras, more general semirings, and matrix constructions over them can be used in order to generate convenient sets of centroids for centroid-based classifiers and to design combined multiple classifiers capable of correcting the errors of individual initial classifiers.

Classification deals with known classes of data. These classes are represented by given samples of data. The samples are used for supervised training of the classifier to enable it to recognize new elements of the same known classes. The classification process begins with feature extraction and representation of data in a standard vector space F^n, where F can be regarded as a semifield.

A **semifield** is a semiring, where the set of nonzero elements forms a group with respect to multiplication. Recall that a **semiring** is a set F with two binary operations, addition $+$ and multiplication \cdot, such that the following conditions are satisfied:

(S1) $(F, +)$ is a commutative semigroup with zero 0,
(S2) (F, \cdot) is a semigroup,
(S3) multiplication distributes over addition,
(S4) zero 0 annihilates F, i.e., $0 \cdot F = F \cdot 0 = 0$.

It is also often assumed that every semiring satisfies an additional property

(S5) (F, \cdot) has an identity element 1.

Our results remain valid without assuming (S5), and so we consider more general semirings, which do not have to satisfy (S5). In analogy with a similar situation in ring theory, we then call every semiring satisfying (S5) a **semiring with identity element**. As usual, such more general terminology adds the convenience of allowing us to consider more general subsets as subsemirings without assuming that all subsemirings contain the identity element. Both terminologies are essentially equivalent, since it is always easy to adjoin an identity element in a standard fashion to every semiring that does not have one.

Every centroid-based classifier selects special elements c_1, \ldots, c_k in F^n, called **centroids** (see, for example, [4]). For $i = 1, \ldots, k$, each centroid c_i defines its class $N(c_i)$ consisting of all vectors v such that c_i is the nearest centroid of v. Every vector is assigned to the class of its nearest centroid.

On the other hand, multiple classifiers are often used in analysis of data to combine individual initial classifiers (see, for example, [27]). A well-known method for the design of multiple classifiers consists in designing several simpler initial or individual classifiers, and then combining them into one multiple classification scheme with several classes. This method is very effective, and is often recommended for various applications, see [24], Section 7.5 and [19]. The main advantage of using combined multiple classifiers is in their ability to correct errors of individual classifiers and produce correct classifications despite individual classification errors.

Denote the number of initial classifiers being combined by n. If o_1, \ldots, o_n are the outputs of the initial classifiers, then the sequence (o_1, \ldots, o_n) is called a **vector**
of outputs of the initial classifiers. In order to define the multiple classifier and
enable correction of errors of the initial classifiers, a set of centroids \(c_1, \ldots, c_k \) is
again selected in \(F^n \). For \(i = 1, \ldots, k \), the class \(N(c_i) \) of the centroid \(c_i \) is again
defined as the set of all observations with the vector outputs of the initial classifiers
having \(c_i \) as its nearest centroid.

The design of multiple classifiers by combining individual classifiers is quite com-
mon in the literature. We refer to [19, 20] and [24] for a list of properties required
of the sets of centroids. In particular, it is essential to find sets of centroids with
large weights and small numbers of generators. The weight \(\text{wt}(v) \) of \(v \in F^n \) is the
number of nonzero components or coordinates in \(v \). The weight of a set \(C \subseteq F^n \)
is the minimum weight of a nonzero element in \(C \). For additional references and
discussion of experimental research related to these properties we refer the readers
to [19, 20].

The information rate of a class set \(C \) in \(F^m \) can be defined as \(\log |F| (|C|)/m \). It
reflects the proportion of output of the individual initial classifiers used to produce
the outcomes of the multiple classification, as opposed to additional efforts spent
on increasing reliability and correcting classification errors.

All sequences of the centroid set \(C \) can be written down in a matrix \(M \) to
discuss their properties. If \(M \) has two identical columns, this means that two
initial classifiers produce identical outputs. This duplication is very inefficient, even
though it could help to correct classification errors. Therefore, in a situation like
this, one of these classifiers can be removed and a better scheme can be devised.
Likewise, it is undesirable to have strong correlation or functional dependencies
between very small sets of columns in \(M \) or between the initial classifiers.

According to [24], Section 7.5, for a classifier with a class set \(C \) to be efficient,
the class \(C \) must satisfy the following most essential basic properties:

1. The set \(C \) must have a large weight.
2. The information rate of \(C \) must be large.
3. A small set of generators for the set \(C \) is essential in order to simplify computer
 storage and manipulation of the set.
4. If all vectors of \(C \) are recorded in a matrix \(M \), then there should not be strong
 correlation or functional dependencies between small sets of columns of \(M \). In
 particular, the matrix \(M \) should not have duplicate columns.

Thus, in particular, it is essential to find sets of centroids with large weights and
small numbers of generators. For additional references and discussion of experi-
mental research related to these properties we refer the readers to [19, 20, 26, 27].

The max-plus algebra is the set \(\mathbb{R} \cup \{-\infty\} \) with two binary operations, max and
+. It is very important in the investigation of discrete event systems, see [3]. The
max-plus algebra is also sometimes called the schedule algebra, see [10]. Our main
results remain valid in the more general case of all semifields, and so we record
them in this setting.

Let \(F \) be a semiring. Consider the semiring \(M_m(F) \) of all \(m \times m \) matrices over
\(F \). Let \(\rho \) be a binary relation on the set \([1 : m] = \{1, \ldots, m\} \). For \(i, j \in [1 : m] \)
denote by \(e_{i,j} \) the standard elementary matrix in \(M_m(F) \) with 1 in the intersection
of \(i \)-th row and \(j \)-th column and zeros in all other entries. It is well known and easy
to verify that the set \(M_\rho(F) = \bigoplus_{(i,j) \in \rho} F e_{i,j} \) is a subsemiring of \(M_m(F) \) if and
only if the relation \(\rho \) is transitive. In this case \(M_\rho(F) \) is called a structural matrix.
semiring. Many interesting results on structural matrix rings have been obtained in the literature (see, for example, [5, 8, 12, 22, 23]). Known facts and references concerning structural matrix rings can be also found in [14].

If \(|\varrho| = n\), then the additive semigroup of \(M_\varrho(F)\) is isomorphic to \(F^n\) and we can introduce multiplication in \(F^n\) by identifying it with \(M_\varrho(F)\). Further we consider sets of centroids as subsets generated in \(M_\varrho(F)\). Every set of elements \(g_1, \ldots, g_k \in M_\varrho(F)\) generates the set \(C(g_1, \ldots, g_k)\) of all sums of these elements and their multiples:

\[
C(g_1, \ldots, g_k) = \left\{ \sum_{j=1}^{m} \ell_{1,j}g_1r_{1,j} + \cdots + \sum_{j=1}^{m} \ell_{k,j}g_kr_{k,j} \mid \ell_{i,j}, r_{i,j} \in M_\varrho(F) \cup \{1\} \right\}.
\]

The set \(C(g_1, \ldots, g_k)\) is called an ideal generated by \(g_1, \ldots, g_k\). The concept of an ideal is very important and has been actively investigated in several branches of modern mathematics. In particular, it is used in the investigation of modules over rings (see, for example, [1, 2]) and ring constructions (see, for example, [13, 14]).

3. Main Results

Let \(\varrho\) be a binary relation on the set \([1 : m]\). We introduce the following binary relations

\[
\varrho_\ell = \{(i, j) \in \varrho \mid \exists k \in [1 : m] : (k, i) \in \varrho\},
\]

\[
\varrho_r = \{(i, j) \in \varrho \mid \exists k \in [1 : m] : (j, k) \in \varrho\}.
\]

and put

\[
M_Z = |\varrho \setminus (\varrho_\ell \cup \varrho_r)|.
\]

For any \(i \in [1 : m]\), let us define the sets

\[
\varrho(i) = \{j \mid (i, j) \in \varrho\},
\]

\[
\varrho^{-1}(i) = \{j \mid (j, i) \in \varrho\},
\]

\[
R(i) = \{j \mid (i, j) \in \varrho \setminus \varrho_\ell\},
\]

\[
L(i) = \{j \mid (j, i) \in \varrho \setminus \varrho_r\}.
\]

We introduce the following nonnegative integers

\[
M_L = \max\{|L(i)| : i = 1, \ldots, m\},
\]

\[
M_R = \max\{|R(i)| : i = 1, \ldots, m\}.
\]

Denote by \(\mathcal{G}_L\) the set of all elements \(g = \sum_{(i,j) \in \varrho \cup (\varrho_\ell \cup \varrho_r)} f_{i,j}e_{i,j} \in M_\varrho(F)\), where \(0 \neq f_{i,j} \in F\). Let \(\mathcal{G}_L\) be the set of all elements \(g = \sum_{j \in L(i)} f_{j}e_{j,i} \in M_\varrho(F)\), where \(i\) runs over the set of all integers \(i\) such that \(|L(i)| = M_L\), and where \(0 \neq f_{j} \in F\).

Denote by \(\mathcal{G}_R\) the set of all elements \(g = \sum_{j \in R(i)} f_{j}e_{i,j} \in M_\varrho(F)\), where \(i\) runs over the set of all integers \(i\) such that \(|R(i)| = M_R\), and where \(0 \neq f_{j} \in F\). Our main theorem describes all sets \(C(g_1, \ldots, g_k)\) with the largest weight in \(M_\varrho(F)\).

Theorem 1. Let \(M_\varrho(F)\) be a structural matrix semiring over a semifield \(F\). Suppose that \(C = C(g_1, \ldots, g_k)\) is an ideal with the largest weight in \(M_\varrho(F)\). Then the following conditions are satisfied:
(i) \(\text{wt}(C) = \max\{1, M_Z, M_L, M_R\} \);
(ii) if \(\text{wt}(C) > 1 \), then \(C \cap (G_Z \cup G_L \cup G_R) \) contains an element of weight \(\text{wt}(C) \);
(iii) \(\text{wt}(C(g)) = \text{wt}(g) = M_Z \), for all \(g \in G_Z \);
(iv) \(\text{wt}(C(g)) = \text{wt}(g) = M_L \), for all \(g \in G_L \);
(v) \(\text{wt}(C(g)) = \text{wt}(g) = M_R \), for all \(g \in G_R \).

4. Proofs

For any semiring \(F \), the left annihilator of \(F \) is the set
\[
\text{Ann}_r(F) = \{ x \in F \mid xF = 0 \},
\]
and the right annihilator of \(F \) is the set
\[
\text{Ann}_r(F) = \{ x \in F \mid Fx = 0 \}.
\]

Lemma 2. For any structural matrix semiring \(M_\ell(F) \) over a semifield \(F \), the following equalities are satisfied:
\[
\text{Ann}_r(M_\ell(F)) = M_\ell \backslash G_\ell(F),
\]
\[
\text{Ann}_r(M_\ell(F)) = M_\ell \backslash G_\ell(F).
\]

Proof. Take any element \(r \) in \(\text{Ann}_r(M_\ell(F)) \). It can be recorded as
\[
r = \sum_{(i,j) \in \ell} f_{i,j} e_{i,j},
\]
where \(f_{i,j} \in F \). Consider any pair \((i,j) \) in \(G_\ell \). There exists \(k \in [1 : m] \) such that \((k,i), (k,j) \in \ell \). Hence \(e_{k,i} \in M_\ell(F) \) and \(f_{i,j}e_{k,i}e_{i,j} \) is a summand of the product \(e_{k,i}r \) in \(M_\ell(F) \). Since \(r \in \text{Ann}_r(M_\ell(F)) \), we get \(f_{i,j} = 0 \). It follows that \(r \) belongs to \(M_\ell \backslash G_\ell(F) \), and so \(\text{Ann}_r(M_\ell(F)) \subseteq M_\ell \backslash G_\ell(F) \).

To prove the reversed inclusion, let us pick any element \(r \) in \(M_\ell \backslash G_\ell(F) \). It can be written down as \(r = \sum_{(i,j) \in \ell} f_{i,j} e_{i,j} \), where \(f_{i,j} \in F \). In order to verify that \(M_\ell(F) r = 0 \), it suffices to show that \(e_{a,b} r = 0 \) for all \((a,b) \in \ell \). Suppose to the contrary that \(e_{a,b} r \neq 0 \) for some \((a,b) \in \ell \). Then it is clear that at least one of the summands \(e_{a,b} f_{i,j} e_{i,j} \) is nonzero for some \((i,j) \in \ell \). The definition of a structural matrix semiring implies that \(f_{i,j} \neq 0 \), \(b = i \), and \((a,i) = (a,b) \in G_\ell \). Hence \(i,j) \in G_\ell \). This contradicts the choice of \((i,j) \) in \(G_\ell \) and shows that \(e_{a,b} r = 0 \) for all \((a,b) \in \ell \). Therefore \(M_\ell(F) r = 0 \), which means that \(r \in \text{Ann}_r(M_\ell(F)) \). Thus \(\text{Ann}_r(M_\ell(F)) \supseteq M_\ell \backslash G_\ell(F) \).

These two inclusions show that equality (13) always holds. The proof of equality (14) is dual and we omit it.

Proof of Theorem 1. (iii): Consider any element \(g \in G_Z \). By definition, we know that
\[
g = \sum_{(i,j) \in \ell \backslash (G_\ell \cup G_\ell)} f_{i,j} e_{i,j} \in M_\ell(F),
\]
where \(0 \neq f_{i,j} \in F \). Clearly, \(\text{wt}(g) = |g \backslash (G_\ell \cup G_\ell)| = M_Z \). Since \(g \backslash (G_\ell \cup G_\ell) = (g \backslash G_\ell) \cap (g \backslash G_\ell) \), Lemma 2 and (1) show that \(C(g) \) coincides with the linear space \(Fg \) spanned by \(g \). Since \(F \) is a semifield, it follows that all nonzero elements of \(C(g) \) have weights equal to the weight of \(g \). Hence \(\text{wt}(C(g)) = \text{wt}(g) \) in this case, and so condition (iii) holds.
(iv): Choose any element $g \in G_L$. It can be represented in the form

$$g = \sum_{j \in L(i)} f_j e_{j,i},$$

where $1 \leq i \leq m$, $|L(i)| = M_L$ and $0 \neq f_j \in F$. Hence we get $\text{wt}(g) = |L(i)| = M_L$. It remains to verify that $\text{wt}(C(g)) = \text{wt}(g)$. To this end, we choose any nonzero element $x \in C(g)$ and are going to verify that $\text{wt}(x) \geq \text{wt}(g)$. It follows from (1) that

$$x = \sum_{j=1}^{k} \ell_j g r_j,$$

for some $\ell_j, r_j \in M_\varphi(F) \cup \{F\}$, where we may assume that only nonzero summands $\ell_j r_j$ are included in the sum. Since $(j, i) \notin \varrho_k$ for all $j \in L(i)$, it follows from Lemma 2 that $\ell_j g = 0$ for every $\ell_j \in M_\varphi(F)$. Therefore we may assume that all the ℓ_j are equal to 1 in the expression (15) for x above.

Keeping in mind that $M_\varphi(F) = \bigoplus_{(a,b) \in \varrho} F e_{a,b}$, the distributive law allows us to assume without loss of generality that every element $r_j \in M_\varphi(F)$ in the expression (15) for x belongs to the union $\cup_{(a,b) \in \varrho} F e_{a,b}$. Since $gr_j \neq 0$, it follows that then all the r_j belong to $\cup_{(i,b) \in \varrho} F e_{i,b}$. The transitivity of ϱ shows that $\varrho(i) \subseteq \varrho(j)$ for all $j \in L(i)$. Since $gr_j \neq 0$, we see that all the r_j belong to $\cup_{b \in \varrho(i)} F e_{i,b}$. Since F is a semifield, it follows that $\text{wt}(gr_j) = \text{wt}(g)$ for all $j \in L(i)$. Therefore $\text{wt}(x) \geq \text{wt}(g)$, as required. Thus, condition (iv) holds.

(v): The proof of condition (v) is dual to that of (iv), and so we omit it.

(ii): Suppose that $\text{wt}(C) > 1$. Choose a nonzero element g of minimal weight in C and consider several cases.

Case 1. $g \notin \text{Ann}_r(M_\varphi(F)) \cup \text{Ann}_t(M_\varphi(F))$. By Lemma 2, we get

$$g \notin M_{\varphi,e_i}(F) \cup M_{\varphi,e_i}(F).$$

Therefore there exist $(a, b), (c, d) \in \varrho$ such that $e_{a,b} g e_{c,d} \neq 0$. However, $e_{a,b} g e_{c,d} \in C$ and $\text{wt}(e_{a,b} g e_{c,d}) = 1$. Hence $\text{wt}(C) = 1$. This contradicts the assumption that $\text{wt}(C) > 1$ and shows that Case 1 is impossible.

Case 2. $g \in \text{Ann}_r(M_\varphi(F)) \cap \text{Ann}_t(M_\varphi(F))$. Lemma 2 implies that

$$r \in M_{\varphi,e_i}(F) \cap M_{\varphi,e_i}(F).$$

It follows from the maximality of $\text{wt}(C)$ and condition (iii), which we have already proved above, that $\text{wt}(g) = M_Z$. Therefore $g \in G_Z$. Since $\text{wt}(g) = \text{wt}(C)$, this means that condition (ii) holds in this case.

Case 3. $g \in \text{Ann}_r(M_\varphi(F)) \setminus \text{Ann}_t(M_\varphi(F))$. Then $ge_{i,t} \neq 0$ for some $(i, t) \in \varrho$. Obviously, $\text{wt}(ge_{i,t}) \leq \text{wt}(g)$. By the minimality of the weight $\text{wt}(g)$ in C, we get $\text{wt}(ge_{i,t}) = \text{wt}(g)$, because $ge_{i,t} \in C$. Therefore there exists a subset $S \subseteq g^{-1}(i)$ such that $g = \sum_{j \in S} f_j e_{j,i}$, where $0 \neq f_j \in F$. Clearly, $|S| = \text{wt}(g)$. Since $g \in M_\varphi(F)$, we get $S \subseteq g^{-1}(i)$. Lemma 2 and $g \in \text{Ann}_r(M_\varphi(F))$ show that $(j, i) \notin \varrho \setminus \varrho_k$ for all $j \in S$. Therefore $S \subseteq L(i)$.

The maximality of $\text{wt}(C) = \text{wt}(g) = |S|$ and condition (iv) proved above imply that $\text{wt}(g) \geq M_L$. By the definition of M_L, we get $M_L \geq |S| = \text{wt}(g)$. Therefore $|S| = M_L$ and $S = L(i)$. It follows that $g \in G_L$. This means that condition (ii) holds true in this case, too.
Case 4. \(g \in \text{Ann}(M_\varrho(F)) \setminus \text{Ann}_r(M_\varrho(F)) \). In this case a dual proof to the proof of Case 3 demonstrates that \(g \in G_R \). Therefore condition (ii) always holds true.

(i): Clearly, condition (ii) implies that \(\text{wt}(C) \leq \max \{1, M_Z, M_L, M_R\} \). On the one hand, the maximality of \(\text{wt}(C) \) and conditions (iii), (iv), (v), (vi) show that

\[
\text{wt}(C) \geq \max \{1, M_Z, M_L, M_R\}.
\]

Therefore condition (i) is satisfied. This completes our proof. \(\square \)

References

