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Abstract: Silk contains a fibre forming protein, fibroin, which is biocompatible, particularly after removing 

the potentially immunogenic non-fibroin proteins. Silk can be engineered into a wide range of materials with 

diverse morphologies. Moreover, it is possible to regenerate fibroin with a desired amount of crystallinity, so 

that the biodegradation of silk materials can be controlled. These advantages have sparked new interest in 

the use of silk fibroin for biomedical applications, including tissue engineering scaffolds and carriers for 

sustained release of biologically active molecules. This article summarizes the current research related to the 

formation of silk materials with different morphologies, their biocompatibility, and examples of their 

biomedical applications. Recent work on the preparation of silk particles by mechanical milling and their 

applications in silk composite scaffolds is also discussed.  
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1. Introduction 
 

Silk consists of fibrous proteins that are stored as a 

liquid in silk producing arthropods (such as silkworms, 

spiders, scorpions, mites and bees) and are spun into 

fibres at secretion [1]. Amongst various silk species, 

silkworm and spider silk fibres have been widely 

studied for their structure, processing, and functional 

properties. About 90% of commercial silk fibres used 

in the textile industry come from Lepidopteron 

silkworms from the family, Bombycidae [2]. In the 

textile industry, it is commonly referred to as Mulberry 

silk. Saturniidae is another class of Lepidopteron 

silkworms that produce commercial silk fibres such as 

Tasar, Eri and Muga.  

Apart from their long history as luxury textiles, silk 

has also been used  in the human body in the form of 

suture material [3]. A study by Minoura et al. [4,5] has 

suggested much wider application prospects for silk. 

Their study showed that silk fibroin of B.mori and 

A.pernyi was equal to or even better than collagen in 

supporting attachment and proliferation of murine L-

929 fibroblast cells. The results have generated 

enormous interest in the ensuing years to examine silk 

fibroin for various biomedical and healthcare 

applications through in-vitro or animal model studies.  

Native silk fibre suture is a Food and Drug 

Administration (FDA, USA) approved biomaterial.   

Recently, regenerated silk has also been approved by 

the FDA for human clinical tests. 

 

2. Different forms of silk biomaterial 
 

Silk biomaterials can be prepared directly from silk 

fibres, or reconstituted from silk fibroin solution.  An 

alternate way is to convert silk fibres into ultrafine 

particles through milling. Figure 1 shows a schematic 

diagram of processing silk fibres into various forms of 

diverse morphologies [6]. 

 

2.1 Native Silk fibre based structures 
 

Degummed silk filaments in the form of twisted 

structures, such as wire-rope, cable, braided, and 

textured yarns have been analysed for potential 

biomedical applications [7]. Silk filaments can also be 

used to construct nonwoven structures as a cell 

supporting template, by partially dissolving silk fibres 

[8,9]. Random arrangements of filaments in a cocoon 

can  be preserved during degumming to design a 

porous nonwoven silk mat for cell seeding [9]. An 

alternate way of using silk filaments directly in tissue 

engineering is making a knitted structure [10]. Such 

knitted structures have been used to reinforce 3-D 

porous tissue engineering scaffolds for improved 

mechanical properties [11].  

2.2 Regenerated Silk Biomaterials 
 

Silk fibres can be dissolved by using a highly 

concentrated solution of chaotropic salts followed by 

dialysis to prepare an aqueous silk solution. 

Alternatively, ionic solvents have been used to dissolve 

silk fibres [12-14]. Silk aqueous solutions form gels 

during prolonged storage (months), particularly when 

silk concentration is high [15]. Hence, silk aqueous 

solutions are normally lyophilized for the purpose of 
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storage and further processing. Lyophilized silk is 

amorphous in nature and can be reconstituted into  

dope using different organic [16-20] or acidic solvents 

[21]. A number of different regenerated products can 

be formed using silk fibroin aqueous solutions or 

reconstituted dope. The following forms of regenerated 

silk have been examined in recent years: 

Figure 1 Process pathways for the different forms of silk biomaterial 

2.2.1 Silk films 

 

Silk fibroin films can be prepared by casting [13,21-

24], spin coating [13], Langmuir-Blodgett (LB) [25] 

and layer by layer deposition [26-28]. Recently, 

patterned silk films have been developed as a  cell 

supporting template for improved cell proliferation 

[13,29]. High oxygen and water vapour permeability of 

silk films is important for their wound healing 

applications [30,31]. 

 

2.2.2 Regenerated silk fibres 

 

Electrospinning has been used to create silk nonwoven 

mats with a large surface area and a porous structure  

 

that are useful for cell seeding [32,33] and as 

separation membranes [34]. More recently, 3-D 

constructions of silk nanofibres have been used as 

blood vessel grafts and nerve guides [35,36]. Likewise, 

wet spinning of silk has been examined to produce silk 

fibres with physical and mechanical properties 

otherwise not available in its natural form. Producing 

regenerated silk with properties comparable to native 

silk fibres has been a major challenge. However, in 

recent years, it has been shown that by appropriate post 

spinning drafting, regenerated silk fibres having 

superior mechanical properties could be produced [37]. 

Likewise, it was also demonstrated that by optimising 

the rate of coagulation during extrusion and through 

post spinning stream annealing of extruded fibres, the 
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fibre properties could be significantly improved. Fibres 

which are finer and tougher than native silk have also 

been prepared [38]. 

 

2.2.3 Silk hydrogel 

 

Hydrogels are three-dimensional polymer networks 

useful for encapsulation and delivery of biologically 

relevant agents. Silk hydrogels can be formed through 

sol–gel transition of aqueous silk fibroin solutions in 

the presence of acids, dehydrating agents, and ions [39-

42]. Recently, silk hydrogels have been formed using 

ultrasonic energy [43].  

 

2.2.4 3-D porous scaffold 

 

Porous 3-D sponges are ideal structures for tissue 

engineering scaffolds as they provide an environment 

quite similar to the in-vivo microenvironment for cells 

to grow into various tissues. Silk 3-D porous scaffolds 

have been prepared using freeze drying, porogen 

leaching, and solid freeform fabrication techniques 

[44-48]. Due to the success in achieving good control 

over porosity and pore size, the development of 

porogen leached 3-D silk scaffolds has continued 

during the last few years for a number of tissue 

engineering applications, predominantly for bone and 

cartilage applications [49-57].  
 

2.2.5 Silk particles 

 

In the past, silk particles were prepared from aqueous 

silk solutions either by dehydration followed by 

pulverisation [58] or by spray drying [59,60]. In order 

to control the particle size and morphology and also to 

further reduce particle sizes, new techniques have been 

examined in recent years. These include self assembly 

[61-63], phase separation [64,65], or rapid expansion 

of supercritical fluid solution. 

 

3. Biologically relevant properties of silk 

biomaterials 
 

In addition to the ability to fabricate diverse 

morphologies, studies in recent years have confirmed 

that the following properties of silk biomaterials are 

important for their applications as advanced 

biomaterials. 

 

 

 

 

3.1 Slow and tuneable biodegradation 
 

Silk is a biodegradable material. The rate of 

biodegradation of silk depends on its structure and 

morphology. For example, Arai et al. [66] 

demonstrated that native silk fibres degrade slowly and 

the degradation depends on the diameter of the silk 

fibre [67]. Wang et al. [68] examined in-vivo 

degradation behaviour of silk porous scaffolds. Their 

studies revealed that by changing the processing 

method (aqueous vs. organic solvent) and processing 

variables (silk fibroin concentration and pore size in 

scaffolds), short-term (up to 2 months) and long-term 

(up to 1 year) in-vivo degradation could be altered. 

Other  studies on the degradation of silk showed that 

processing solvents [24,46] and the annealing methods 

[69] could also influence biodegradation of silk. These 

studies indicate predictable degradation behaviour of 

silk which is highly desirable for biomedical 

applications. 

 

3.2 Biocompatibility 

 
All non-autologous biomaterials result in some foreign 

body response when interacting with living tissues. 

Despite their longstanding use as suture materials, 

including the successful embolization of cerebral 

arteriovenous malformations [70, 71], some adverse 

immunological events have been associated with silk 

proteins. Such problems are now linked to the presence 

of silk gum (sericin) [72] or one or more non fibroin 

components, which can be removed while preparing 

silk based biomaterials [73]. There  are still some 

concerns that fibroin itself may also cause delayed 

hypersensitivity, but admittedly only in rare cases [74]. 

Multiple studies with silk biomaterials, such as fibres 

[75], micro-fibrous meshes [8], nonwoven mats [8,76], 

films [25,77,78], hydrogels [42], and 3-D sponge [68],  

have shown only mild foreign body response in some 

cases when studied in-vitro [8,25,42,72,75,77,79]. 

Similarly, cytotoxicity was found to be very low in 

animal model studies [8,68,76,78]. Overall, there has 

been widespread acceptance that properly degummed 

and sterilised silk products are biocompatible and 

comparable with other commonly used biomaterials, 

such as polylactic acid (PLA) and collagen [72,80]. 

Some studies even suggest that, compared to collagen 

coatings, silk coatings have superior ability over 

synthetic biomaterials to reduce the expression of pro-

inflammatory cytokines, like IL-1β, TNF-α, or TGF-β1 

[81,82], and also reduce thrombogenesis [83]. 
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4. Targeted biomedical applications 
 

4.1 Wound healing and tissue engineering 
 

In 2000, Sugihara et al. [84]  showed that wound 

healing was much faster with silk films than 

conventional hydrocolloid dressing
 

(Duro Active). 

Their histological findings revealed greater collagen 

regeneration and less inflammatory response in the 

case of silk. Other silk materials, such as nonwoven 

mats [76], hydrogels [85], and electro-spun silk fibroin 

mats [86] have also shown promises as wound healing 

materials. In recent years, silk has been widely studied 

for tissue engineering applications. Host cells are pre-

seeded in scaffolds followed by implantation in the 

damaged site of the body. Silk scaffolds have been 

extensively used for the regeneration of 

musculoskeletal tissues, such as bone and cartilage 

with promising results [87-89]. For example, Meinel et 

al. [53,55] showed that silk 3-D scaffolds with pre-

differentiated (osteogenic) hMSCs could support 

healing critical size femoral segment defects and 

calvarial critical sized defects in nude rats and mice, 

respectively. 3-D scaffolds exhibited good osteogenic 

potential, almost bridging the defects with new bone 

after 8 weeks and exhibited good load-bearing 

capabilities and torque when compared to their other 

experimental and control groups [53].  Incorporation of 

BMP-2 in scaffolds could further accelerate the healing 

of bone defects in animals with or without pre-

differentiated hMSCs [54]. In addition, 3-D porous 

scaffolds showed promising results for cartilage tissue 

engineering [9,56,57,90] and generation of bone and 

cartilage at the same time [91].  

 

 

Figure 2 Human Tympanic membrane keratinocytes 

growth on silk fibroin membrane: (i) Light microscopy 

image of day 18 [99]; (ii) Confocal microscopy image 

of cells immunofluorescently stained with occludin 

(green) and ZO-1 (red). Cell nuclei are counterstained  

with DAPI (blue) [100]. 

 

Other tissue engineering studies  with silk for repair 

of specific defects include regeneration of ligament 

[7,11,92], peripheral nerve [79], skin [93,94], cornea 

[29,95], ear drum [96], and trachea [97]. Recently, 

Lovett et al. used silk fibroin for the construction of 

microvascular grafts [98]. Tissue engineered silk sling 

for the treatment of stress urinary incontinence has also 

been reported [10]. Silk membranes have been used for 

the growth of human tympanic membrane (TM) 

kerotinocytes [99]. Figure 2 presents images of TM 

keratinocytes grown on such silk films. 

 

4.2 Immobilisation and delivery of 

drugs/enzymes  
 

Mild aqueous processing of silk is advantageous for 

loading sensitive drugs without affecting their 

functions. For example, Lu et al. studied glucose 

oxidase, lipase, and horseradish peroxidise entrapped 

in silk films and found that for over 10 months, 

enzymes retained their significant activity, even when 

stored at 37
0
C, and in the case of glucose oxidase, they 

did not lose any activity [101]. Release kinetics of 

drugs and enzymes is reported to depend, to a large 

extent, on the content of crystalline β-sheets [28,61, 

102,103].  

Silk has been used for the control release of specific 

drugs for targeted clinical needs. Uebersax et al. [104] 

and Szybala et al.[105] used silk matrices as 

adenosine-releasing bioincubators that may be useful 

in the management of epilepsy. Recently, Pritchard et 

al. demonstrated that slow (up to 2 weeks) and linear 

release of adenosine was possible by controlling the 

thickness and cystrallinity of silk coatings [105]. 

Bayraktar et al. [106] used aqueous silk solutions to 

coat theophylline tablets. It was shown that slow 

release by multilayered silk coatings could enhance the 

efficacy of delivering emodin, an anti breast cancer 

and anti tumour drug [107,108]. Numata and Kaplan 

have recently reviewed silk-based multi-block 

copolymer systems as vehicles for sustained release of 

small molecule drugs, proteins and genes [109]. 

Silk particles have also been examined for potential 

drug delivery applications.  Lorenz Meinel’s group 

reported encapsulation and release of horseradish 

peroxidase (HRP) using self assembled silk 

microspheres [61]. They also reported encapsulation of 

salicylic acid, propranolol hydrochloride, and 

recombinant human insulin growth factor I (IGF-I) in 

silk microspheres. Encapsulation efficiency of IGF-I 

was close to 100%. They also used BMP-2 and IGF-I 

loaded silk microspheres in silk porous scaffolds and 

obtained enhanced osteochondral tissue engineering 

outcomes [91]. 
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Silk’s ability to hold therapeutic enzymes can be 

combined with the change in optical response of silk to 

design biodegradable and chemically responsive 

implantable optofluidic devices for applications such 

as monitoring changes in blood glucose. Domachuk et 

al. incorporated hemoglobin into free-standing silk 

diffraction gratings and simultaneously immobilized 

enzymes to examine such prospects [110]. 

 

5. Recent advances in silk milling and 

applications of milled silk particles 
 

Developments of silk particles for biomedical 

applications have been mostly restricted to bottom up 

approaches as discussed already. However, top down 

approach of particle preparation through milling has 

comparative advantages as it can avoid the use of 

chemicals and the long dialysis time associated with 

the bottom up methods. The silk powder thus prepared 

should enhance the application scope of silk based 

materials also. 

 

5.1 Silk milling 
 

Silk has a hierarchical structure with fibroin chains 

forming nano fibrils, bundles of which constitute the 

fibre [111-117]. This suggests an opportunity to 

defibrillate silk into nano fibrils and fine particles. 

However, silk being a strong viscoelastic material is 

difficult to mill into fine particles with a controlled 

morphology and a narrow size distribution. Hence, a 

very long milling time (up to 48 hours) is usually 

necessary to obtain maximum possible fineness of 

around 5 µm [118-120]. To overcome such problems, 

pre-treatments such as alkali degradation [118], 

exposure to high temperature [121], radiation 

[122,123], and steam explosion [124,125],  have been 

used to improve the milling efficiency. New 

developments have been reported to improve fine silk 

powder production in recent years.  Li et al. discussed 

preparation of nano silk particles through a multistep 

process which includes a special high pressure device 

and filtering large particles during the process 

[126,127].  

We have recently examined a number of standard 

milling devices to prepare ultrafine silk particles from 

Mulberry and non-Mulberry silk fibres. Milling 

sequences using a combination of milling systems such 

as a cutter mill, a rotary mill, different forms of ball 

mills and an air jet mill were examined [128,129]. We 

observed that non-Mulberry silk fibres which have a 

more porous structure and lower strength could be 

milled more efficiently than mulberry silk [129]. It was 

shown that by appropriate selection of milling 

sequence and milling parameters, milling time could be 

reduced to about 6 hours without any pre-treatment. A 

final step using air jet milling could achieve dry silk 

powder with a volume based median particle size of 

less than 1 μm. Figure 3 shows images of such 

particles. 

  
                      i                                          ii 

 

Figure 3 Wet milled and spray dried silk particles 

 (i) before and (ii) after air jet milling. 

 

5.2 Silk composites with silk particles 
 

Despite excellent biological outcomes, 3-D silk 

scaffolds are not strong enough for load-bearing tissue 

engineering applications. Kim et al. [49] reported that, 

usually, bone-like tissue ingrowth could be seen after 

12 weeks of cell seeding in 3-D silk scaffolds. Such 

bonny tissue deposition could enhance the strength of 

scaffolds, but they were still much weaker (wet 

compressive modulus remained less than 200 kPa and 

yield strength less than 40 kPa) than the natural bone.  

To increase the mechanical properties of silk 

scaffolds, milled silk particles were used as a 

reinforcing agent to fabricate a new silk-silk composite 

system [130]. SEM images of the composites are 

presented in Figure 4. The reinforcing particles 

maintained their crystalline structure in the composites 

[131], but unlike parent fibres, the particles are 

partially soluble in organic solvent, such as 

hexaflouroisopropanol (HFIP) [130]. This provides a 

high interfacial bonding between the particles and the 

bulk phase prepared using HFIP. This mechanism has 

resulted in a substantial increase in mechanical 

properties of silk particle reinforced silk composites 

(Figure 5). This novel silk processing method therefore 

provides a promising option for preparing new silk 

based biomaterials for hard tissue engineering 

applications. Further work is ongoing in this area in 

our laboratory in collaboration with Prof Kaplan’s  

group at Tufts University.
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(i) HFIP based, reinforced with 100% silk particles; 

 

(ii) water based, reinforced with 25% silk particles. 

 

Figure 4 SEM images of 3D silk composite scaffolds 

 

 
 

(i) Compressive load vs. strain curves 

 (porogen size: 500-600 μm); 

(ii) Compressive modulus. 

 

Figure 5 Compressive properties of silk composite scaffolds prepared from 17% HFIP-based silk solution 

reinforced with different % of silk particles[130]. 

 

6. Conclusion 
 

Research into silk materials and their in-vitro and in-

vivo performance for targeted biomedical applications 

has gained much ground over the last few years. This 

has resulted in unique innovations in silk materials 

developed for specific applications. In addition to silk 

fibres and solutions, milled silk particles are now 

expanding the application scope for silk based 

biomaterials.  
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