
Available from Deakin Research Online:

http://hdl.handle.net/10536/DRO/DU:30049240

Every reasonable effort has been made to ensure that permission has been obtained for items included in Deakin Research Online. If you believe that your rights have been infringed by this repository, please contact drosupport@deakin.edu.au

Copyright : 2012, NCCARF
Great Ocean Road Region – Alternative Adaptation Pathways for the Connectivity of Coastal Towns Under Future Climate Effects

Poster Number: 117

P. Roos1, D. Jones1, G. Wescott1

1Deakin University

The Great Ocean Road Region is Victoria’s most popular visitor destination outside Melbourne, and one of the most publicly accessible coasts in the world. Stretching from Warrnambool to Torquay, the landscape provides a place of infinite visual and ecological diversity with thriving coastal towns amongst rugged mountain ranges, coastal scenery and estuaries, rainforests and extensive productive farmlands in the hinterlands. These attractions, with their proximity to Melbourne, make the region a popular visitor destination while the seaside lifestyle in the area is attracting more full time residents, mirroring the ‘sea change’ phenomena. Key to the economic survival of this region is its accessibility, the connectivity of the coastal towns and the hinterland to the outside world, the availability of a diverse interconnected transport infrastructure. Change these attributes and qualities and you have a dramatic effect upon the region’s survival, its context, economic, social and environmental attributes and values. Drawing upon recent literature on coastal planning and management, the Great Ocean Road Region Strategy (2004), and recent findings of the Surf Coast Climate Change Vulnerability and Adaptation Project (2011), backed by the third Victorian Coastal Strategy (2008) this paper reviews and critiques the potential climate impact effects of these settlements and its related transport infrastructure, identifies best practice methods for the evaluation of alternative adaptation pathways in treating risks from sea level rise and associated coastal recession, classifies and charts a transport infrastructure asset model relevant for this location having regard to the unique spatial and temporal risk circumstances, and offers a connectivity-informed climate change adaptation model on how this region possesses specific resilience and urban design answers.