This is the published version:

Available from Deakin Research Online:

http://hdl.handle.net/10536/DRO/DU:30052109

Every reasonable effort has been made to ensure that permission has been obtained for items included in Deakin Research Online. If you believe that your rights have been infringed by this repository, please contact drosupport@deakin.edu.au

CX3CR1-Dependent Homing of MHC Class II Positive Cells to the Normal Mouse Corneal Epithelium

H. R. Chinnery¹A, M. J. Ruitenberg¹B, G. W. Plant¹B, S. Jung², E. Pearlman³ and P. G. McMenamin¹A

¹School of Anatomy & Human Biology,²Red’s Spinal Cord Research Laboratory and the School of Anatomy & Human Biology, ³University of Western Australia, Crawley, Australia
²Department of Immunology, Weizmann Institute of Science, Rehovot, Israel
³Department of Ophthalmology and the Center for Global Health and Diseases, Case Western Reserve University, Cleveland, Ohio

Commerical Relationships: H.R. Chinnery, None; M.J. Ruitenberk, None; G.W. Plant, None; S. Jung, None; E. Pearlman, None; P.G. McMenamin, None.

Support: NHMRC Grants 353617 and 9935975, UWA small grant, NIH Grant EY14362 and Neurotrauma Research Program.

Abstract

Purpose: The cornea was traditionally thought to be devoid of resident immune cells. Recent investigations however have confirmed that there are in fact populations of macrophages and dendritic cells (DCs) in the stroma and epithelium of the cornea, although the precise phenotype and distribution are still controversial. CX3CR1, the sole receptor for the chemokine fractalkine, is expressed by these monocyte-derived cells.

We have utilized transgenic CX3CR1GFP mice, in which either one (heterozygous) or both (homozygous) copies of the CX3CR1 gene were replaced by green fluorescent protein (eGFP), to characterise monocyte-derived cells in the mouse cornea.

Methods: Wholemount corneas from naïve 6-12 week old mice were immunostained with leukocyte antibodies MHC class II, CD169, CD11b and CD68 and analysed using epifluorescence and confocal microscopy. MHC class II+ cells were counted in the corneal epithelium of wild-type, CX3CR1+/GFP heterozygous and CX3CR1GFP/GFP homozygous mice.

Results: We found a significant reduction in the number of MHC class II+ cells (putative DCs) in the corneal epithelium of CX3CR1-deficient mice (p<0.009) compared to wild-type mice. Throughout the thickness of the corneal stroma, immunostaining revealed GFP+ cells that were double positive for either CD169, CD68, CD11b or MHC class II indicating a macrophage phenotype, in both heterozygous and homozygous mice.
homozygous (CX₃CR1-deficient) mice. These were also distributed both centrally and peripherally.

Conclusions: This study clearly demonstrates a critical role for fractalkine and its receptor, CX₃CR1, in the normal homing of MHC class II⁺ cells to the corneal epithelium.

Keywords: cornea: epithelium • keratitis • inflammation

© 2007, The Association for Research in Vision and Ophthalmology, Inc., all rights reserved. Permission to republish any abstract or part of an abstract in any form must be obtained in writing from the ARVO Office prior to publication.