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Abstract

Fire is a major disturbance process in many ecosystems world-wide, resulting in spatially and temporally dynamic
landscapes. For populations occupying such environments, fire-induced landscape change is likely to influence population
processes, and genetic patterns and structure among populations. The Mallee Emu-wren Stipiturus mallee is an endangered
passerine whose global distribution is confined to fire-prone, semi-arid mallee shrublands in south-eastern Australia. This
species, with poor capacity for dispersal, has undergone a precipitous reduction in distribution and numbers in recent
decades. We used genetic analyses of 11 length-variable, nuclear loci to examine population structure and processes within
this species, across its global range. Populations of the Mallee Emu-wren exhibited a low to moderate level of genetic
diversity, and evidence of bottlenecks and genetic drift. Bayesian clustering methods revealed weak genetic population
structure across the species’ range. The direct effects of large fires, together with associated changes in the spatial and
temporal patterns of suitable habitat, have the potential to cause population bottlenecks, serial local extinctions and
subsequent recolonisation, all of which may interact to erode and homogenise genetic diversity in this species. Movement
among temporally and spatially shifting habitat, appears to maintain long-term genetic connectivity. A plausible
explanation for the observed genetic patterns is that, following extensive fires, recolonisation exceeds in-situ survival as the
primary driver of population recovery in this species. These findings suggest that dynamic, fire-dominated landscapes can
drive genetic homogenisation of populations of species with low-mobility and specialised habitat that otherwise would be
expected to show strongly structured populations. Such effects must be considered when formulating management actions
to conserve species in fire-prone systems.
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Introduction

Fire is a major disturbance process that changes landscape

structure in many ecosystems worldwide [1,2] and has profound

impacts on biodiversity [3]. Substantial changes in species diversity

and community structure may result from fire, including an

increased risk of extinction for populations [4–6]. Fires initiate

spatial and temporal changes in resources, which alter the

suitability of habitat for species [7]. This can lead to patchily

distributed populations with consequences for population demog-

raphy [8,9], genetic structure [10–12] and metapopulation

dynamics [13].

The effects of fire-induced landscape change on ecological and

population processes are complex, and major gaps remain in our

knowledge [7,14,15]. Fire directly reduces population size [8,9,16]

and in severe events may cause temporal bottlenecks in population

size. Bottlenecks often drive a loss of genetic diversity and

inbreeding that may lead to the accumulation and expression of

deleterious alleles, inbreeding depression and the subsequent

reduction of population viability [17–19]. Changes in the spatial

pattern of habitat resulting from fire can also increase the isolation

of populations [20] and alter the movement of animals between

patches [21,22].

Following disturbance by fire, subsequent population recovery

will be influenced by many factors including the number and

demographic parameters of survivors [8,23], resource availability

[24], post-disturbance successional pathways [7,25], species’

dispersal ability [26] and the geographic scale and patchiness at

which the fire occurred [7,9,27]. Understanding the consequences

of disturbance by fire for population processes is profoundly

important for the management of species in fire-prone environ-

ments. This includes the need to develop appropriate fire regimes

[14,16,23], to assess the susceptibility of populations to extinction

[28] and to mitigate potentially adverse effects of post-fire

disturbance activities [9].

This study examines the genetic diversity and structure of a

globally endangered bird species, the Mallee Emu-wren Stipiturus

mallee. The Mallee Emu-wren is one of the tiniest members (4–

6.5 g) of the family Maluridae, endemic to the semi-arid zone of

south-east Australia [20,29,30] (Figure 1). This zone encompasses

extensive tracts of ’mallee’ shrublands dominated by 3–10 m tall

Eucalyptus spp. ‘Mallee’ refers to the growth form of Eucalyptus spp.
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characterised by a large underground lignotuber from which

multiple stems sprout. The Mallee Emu-wren is a resident habitat

specialist and has a patchy distribution. Multi-scale studies of the

habitat requirements of this species show that its distribution is

strongly influenced by the post-fire age of vegetation, as a

consequence of seral changes in the structure of ground-storey

spinifex grass (Triodia scariosa) on which it depends [20,31]. In the

northern area of its distribution (i.e. Murray-Sunset and Hattah-

Kulkyne National Parks), it inhabits Triodia-mallee vegetation

older than 15 years since last burnt, with a slight preference for

vegetation 15–29 years of age [20]). There are no studies on

dispersal of this inconspicuous species. Nonetheless, its short,

rounded wings and long filamentous tail, which allow it to scurry

through dense spinifex grass, make it a notoriously poor flier likely

to have limited dispersal capability [30].

In recent decades, the Mallee Emu-wren has undergone a

precipitous reduction in numbers and distribution. Large wildfires

(.10 000 ha), exacerbated by drought, have caused the extinction

of populations in parts of the south-west of its range. Large fires

and inappropriate fire regimes that reduce the amount of habitat

of suitable age are considered a significant threat to remaining

populations. Geographic range contraction has occurred such that

the Murray-Sunset and Hattah-Kulkyne National Parks in

northern Victoria now support an estimated 92% of the global

population. Small, scattered and isolated populations occur in

South Australia in Billiatt and Ngarkat Conservation Parks and

only one pair was recorded in the Big Desert/Wyperfeld reserve

complex in Victoria in 2006 [20]. Extensive expert survey in 2006

of areas that once held the species (Wathe and Bronzewing Fauna

and Flora Reserves) failed to find any Mallee Emu-wrens

[20](Figure 1).

This study examines the genetic diversity and structure of the

Mallee Emu-wren across its global range. The primary objective

was to examine spatial genetic patterns among populations across

the species’ range to draw inferences about population structure

and processes. Its occurence in a fire-prone environment, coupled

with the intrinsic characteristics of the Mallee Emu-wren (e.g. poor

flight capability) strongly suggest that it may exhibit a metapop-

ulation structure at the landscape-scale, with relatively strong

patterns of genetic divergence (i.e. population genetic structure)

expected among geographically-dispersed sampling units [32].

Such insight would be important for the management of this

species, including the potential need for relocation and population

augmentation.

Materials and Methods

Study area and sample collection
The Mallee Emu-wren is inconspicuous and rare, has patchy

distribution and occur in low density [20], making it difficult to

locate and capture. Samples were collected during 2006–2008 as

part of a wider study of the ecology of this species. Blood and

feather samples were analysed from 72 individuals from six

locations across the global range of the Mallee Emu-wren in south-

eastern Australia (bounded by 34u509S–36u009S, 140u009N–

142u509N). Four locations were within the Murray-Sunset

National Park (n = 10, 10, 12, and 6). The other locations sampled

were Hattah-Kulkyne National Park (n = 28) and Ngarkat

Conservation Park (n = 6) (Figure 1, Table 1). Based on

contemporary survey estimates, the proportion of the population

sampled from the Murray-Sunset National Park is less than 1%.

The proportion of the population sampled from Hattah-Kulkyne

National Park is about 10% [20], and 15% of the known

Figure 1. Map of sampling localities within the conservation reserve system of the Murray Mallee region, south-east Australia.
Numbered ellipses indicate sites where Mallee Emu-wrens were sampled. 1 Hattah-Kulkyne National Park (NP), 2 Murray-Sunset NP (East), 3 Murray-
Sunset NP (Central), 4 Murray Sunset NP (West), 5 Murray Sunset NP (South) and 6 Ngarkat Conservation Park. The historic distribution is represented
by light grey stippling (Higgins et al. 2001). Solid grey represents the reserve system in Victoria and South Australia. FFR = Fauna and Flora Reserve.
New South Wales (N.S.W.), South Australia (S.A.) and Victoria (Vic.).
doi:10.1371/journal.pone.0059732.g001
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population of Ngarkat Conservation Park was sampled in 2007

(i.e. six of 20 male/female pairs; C. Hedger, personal communi-

cation). Individuals sampled within the Murray-Sunset and

Hattah-Kulkyne National Parks, were obtained from vegetation

greater than 17 years since last burnt. The samples from Ngarkat

Conservation Park originated from mid to late-age mallee-heath

vegetation of similar structure (exact age unknown).

Long-term ecological and genetic studies on other species of the

family Maluridae show males are philopatric, and related males

(e.g. brothers) have a tendency to occupy neighbouring territories.

Dispersal tends to be female biased, although the pattern and

distance varies within populations and among species [30]. A

preliminary population study of the Mallee Emu-wren, in which

individuals were individually banded, showed that males occupied

overlapping breeding territories of about 5 ha (S. Brown,

unpublished data). On this basis, samples for population analyses

were collected at minimum intervals of 500 m, and where possible,

at about 2 km intervals, to minimise potential non-random

sampling (i.e. sampling related individuals). However, because

this species is rare and has a highly patchy distribution, this was

not always possible. With the exception of Hattah-Kulkyne

National Park, locations were visited only once, hence avoiding

temporal sampling of offspring. Due to severe drought in south-

eastern Australia (from 1997 up until the period of sampling,

2006–08 [33]), breeding was uncommon (S. Brown, personal

observations) and consequently most samples collected comprised

only of a male/female pair from any given site. Parentage analysis

(CERVUS 3.0, [34], Text S1, Table S1) was used to identify

possible parent-offspring pairs among individuals. Six potential

offspring originating from Hattah-Kulkyne National Park were

removed from analysis (Text S1, Table S1). Known offspring and

individuals that had more than 2 loci missing were excluded (in

total, n = 15 were excluded from 87 original samples).

Mallee Emu-wrens were captured either by trapping in

monofilament mist nets, or by throw nets after being lured by

playback recordings of calls (�David Stewart/Nature Sound). The

species is sexually dichromatic and males are easily distinguished

from females by the presence of brilliant sky-blue throat and breast

feathers [30]. Between 10 and 50 ml of blood was collected from

the brachial vein, or a single pin feather was removed, and

material stored in 70% molecular grade alcohol, for subsequent

extraction of DNA and genetic analyses.

Ethics Statement
All work was conducted under Deakin University Animal Ethics

Committee approval (A35/2005) and research permits issued by

the Department of Sustainability and Environment, Victoria

(10003389) and the Department of Environment and Heritage,

South Australia (G24995, 29/2005-M1).

Molecular marker selection and PCR
DNA was extracted from samples using a standard ethanol/

chloroform extraction method [35]. Samples were genotyped at 12

variable nuclear loci. Eleven microsatellites were amplified using

primers developed for the Splendid Fairy-wren Malurus splendens

[36] Superb Fairy-wren M. cyaneus [37] and Southern Emu-wren

Stipiturus malachurus [38]. A single Exon-Primed-Intron-Crossing

(EPIC) region was amplified [39], with primers re-designed so that

the product was of a suitable length to be run on a Li-Cor 4300

Global IR2 two-dye DNA sequencer. IRD-labelled M13 primer

was added at 0.1 mM to the EPIC PCR reactions, so that alleles

could be visualized by electrophoresis on 6% polyacrylamide

sequencing gels. Four of the six microsatellite primer pairs from

the Southern Emu-wren were re-designed so that two panels of

microsatellite products could be run on an ABIH capillary system

(Table 2).

PCR reactions for microsatellites and product separation were

performed in two different laboratories, with cross-referencing

quality control. PCR reactions for each marker were optimised

using the following: 20–40 ng of sample DNA, 0.5 Units Go Taq

DNA polyermase, 56 buffer, 0.25 mM dNTPs, 0.5–4.5 mM

MgCl2 (Promega/MBI Fementas) and 5–10 pmol of each primer

pair in a total volume of 20 ml. Microsatellite products were run on

an ABIH Capillary Analyser (Perkin Elmer) or a Li-Cor 4200 and

4300 Global IR2 two-dye DNA sequencer for separation and

sizing. Putative homozygotes were amplified and genotyped twice

to confirm their status. Positive and negative controls were used in

all reactions.

Genetic diversity
Standard measures of genetic diversity for length-variable

markers were obtained in various programs, treating the six

geographic locations as separate populations. GENALEX V6.0

[40] was used to calculate observed (Ho) and unbiased expected

heterozygosity (UHe). Unbiased He was used as this metric is

better suited than standard He for estimating heterozyosity when

sample sizes are low [41]. Allelic richness (AR, i.e. allelic diversity

corrected for differences in sample size) and inbreeding coefficient

(FIS) were calculated in FSTAT 2.9.3.2 [42]. Tests for deviations

from Hardy-Weinberg equilibrium and linkage equilibrium were

performed using GENEPOP V4.0 [43].

Enhanced effects of genetic drift in small, isolated populations

are expected to lead to increased genetic differentiation among

sites. The extent of genetic differentiation between each pair of

Table 1. Sample size (n), allelic richness (AR), observed (Ho) and expected heterozygosity (UHe), and inbreeding coefficient (FIS) for
72 individuals of the Mallee Emu-wren from six locations across the species’ global range.

Population n Males Females AR Ho UHe FIS H-W disequilibrium Monomorphic loci

Hattah-Kulkyne NP 28 15 13 3.57 0.41 0.46 0.124* Smm1, Smm3 Msp6, Smm6, Smm7

Murray Sunset NP (East) 10 5 5 3.06 0.46 0.45 20.038 Mcy7, Msp6, Smm6, Smm7

Murray Sunset NP (Central) 10 5 5 3.83 0.44 0.49 0.095 Mcym4 Smm6, Smm7

Murray Sunset NP (West) 12 7 5 3.80 0.53 0.52 20.022

Murray Sunset NP (South) 6 4 2 3.50 0.43 0.47 0.094 Msp6, Smm6, Smm7

Ngarkat Conservation Park 6 2 3 2.92 0.43 0.43 20.094 15144s1, Mcy7, Msp6,
Smm6, Smm7

*p = 0.05.
doi:10.1371/journal.pone.0059732.t001

Population Genetics of the Mallee Emu-Wren

PLOS ONE | www.plosone.org 3 April 2013 | Volume 8 | Issue 4 | e59732



sites was estimated using two allele-frequency-based measures: FST

calculated in GENEPOP V4.0 [43] and Jost’s D, adjusted for small

sample sizes (Dest)[44], calculated in the DEMEtics package in R

[45]. FST and Dest as measures of genetic differentiation each have

different strengths and shortcomings, so we present both to infer

population differentiation [46]. Both FST and Dest values theoret-

ically range from zero to one, with zero indicating no differen-

tiation (i.e. no differences in allele frequencies and one represent-

ing maximum differentiation) [41]. FST is a widely used estimator

of population genetic structure, with which many researchers are

familiar [46,47]. On the other hand, Jost’s D may be more

appropriate for highly-variable markers (e.g. microsatellites)

[44,48]. Furthermore, simulations have shown that G’ST, (which

is almost perfectly correlated with Jost’s D [49], which is used

here), accumulates faster than FST following the introduction of

barriers to gene flow [50]. Because FST and Jost’s D are allele-

frequency-based analyses, they should reflect processes operating

on longer time-scales than individual, genotype-based analyses

(e.g. STRUCTURE, TESS; see below).

Bottleneck analysis
The heterozygosity excess test in the program BOTTLENECK

V1.2.03 [51] was used to ascertain whether recent declines (within

several dozen generations) in population size have occurred in the

Mallee Emu-wren [52]. Populations that have recently experi-

enced a bottleneck lose relatively more allelic diversity (through

loss of rare alleles) than heterozygosity relative to that expected if a

population was at mutation-drift equilibrium [52]. This heterozy-

gosity excess should not be confused with that underpinning FIS -

which is an expression of excess of heterozygotes relative to

proportions expected under Hardy-Weinberg equilibrium [46].

The heterozygosity excess test is reasonably robust to incorrect

assumptions about mutation models [53]. Significance of hetero-

zygosity excess was determined using the Wilcoxon signed-rank

test, as it is robust to the effects of both small samples sizes (,30)

and a small number of loci (,20) [51]. Tests for heterozygosity

excess were performed using a two-phase mutation model (TPM)

in BOTTLENECK, with the proportion of stepwise mutations set

to 90%.

Population structure
To assess the extent of genetic population structure across the

species’ global range, individual genotype-based Bayesian cluster-

ing algorithms were implemented in both STRUCTURE 2.3.3

(without spatial information) [54,55] and TESS 2.3.1 (incorporat-

ing spatial information) [56,57]. Because these analyses are

individual based, TESS and STRUCTURE are less biased by

effects of small sample sizes or violations of assumptions of Hardy-

Weinberg equilibrium, compared with population based analyses.

STRUCTURE was run using the admixture model with correlated

allele frequencies, and K values 1 to 10. Twenty replicate runs

were performed for each K value. Each run was 36106 Markov

Chain Monte Carlo (MCMC) repetitions following a burn-in

period of 106 repetitions.

TESS incorporates information on individual geographic

coordinates and has been shown to be more powerful than non-

spatial algorithms, especially in weakly differentiated populations

[56–58]. TESS was run using the conditional autoregressive model

(CAR) admixture model with spatial interaction parameter (i.e.

weighting of the geo-coordinates) set at 0.6, as recommended for

Table 2. Hypervariable-length nuclear loci used in this study and their characteristics.

Locus Reference Accession NO 59 Primer 39 Primer bp# NA

Microsatellites Smm1{ [36] DQ160181 TGGGAATGCTCTATTTCTGG ACTCCATGGAACTCCAGACG 274–
330

15

Smm2 DQ160185 CCAAGACCTGACACTTACGC CACAGAGGAGCTCACACACG 203–
398

26

Smm3 DQ160186 CATATGAATGTAGCAGCTGGG CATGGCACAGTGAGCTGG 299–
497

32

Smm5{ DQ160184 TCAGGGAGAAAAAGCAAGGA CCCTGAGTGACCCTGATGTT 309–
351

3

Smm6{ DQ160183 AAAGCTGCGTATCCCAAGG GCAAATCTGGTGAGCTGTGA 441–
443

2

Smm7{ DQ160182 TGCTCTGGTTTGACTGATGC GCCAGCCAGGATGCTATTTA 187–
189

2

Mcy7 [35] U82391 CTTTGTGTTGCTGTTAGGTAGAA GGCTCAACAGCTATTTGCAT 86–88 2

Mcy4 U82388 ATAAGATGACTAAGGTCTCTGGTG GGCTCAACAGCTATTTGCAT 158–
180

10

Msp4 AY320050 GGAGAGACCGGGAAACAGAGAC 9TAGCAATTGTCTATCATGGTTTG 167–
174

3

Msp6 AY320051 GCAGGTTTTTAATGGCATCAAG GCAGGTTTTTAATGGCATCAAG 237–
241

2

Msp10 AY320051 CGCGTCAAATAAGGGGGAAACC CGCGTCAAATAAGGGGGAAACC 143–
173

9

EPIC 15144s11 [37,71] P23913 TTGAACCCTCGTATTGGCAG ATGGTTTTCATTTGCCMCAA 292–
294

2

#Microsatellite sizes detected in the Mallee Emu-wren.
{Primers re-designed from Genbank submission sequence clones [38].
1Primers modified from Backström et al. [39,81].
bp = allele size range, NA = number of alleles.
doi:10.1371/journal.pone.0059732.t002

Population Genetics of the Mallee Emu-Wren

PLOS ONE | www.plosone.org 4 April 2013 | Volume 8 | Issue 4 | e59732



K<5 populations [56]. One hundred replicate runs of 100 000

sweeps (disregarding the first 30 000) sweeps were performed for K

values 2 to 9. The Deviance Information Criterion (DIC) was used

to select the model that best fit the genetic data [59]. DIC values

averaged over 100 independent iterations were plotted against K,

and the most likely value of K was selected by visually assessing the

point at which DIC first reached a plateau and the number of

clusters to which individuals were proportionally assigned. The 10

runs with the lowest DIC values for the selected K-value were

retained and their admixture estimates were averaged using

CLUMPP V 1.1.2 [60], applying the greedy algorithm with

random input order and 1000 permutations to align the runs and

calculate G’ statistics. Results were visualised using DISTRUCT

1.1 [61].

Results

Genetic diversity and bottlenecks
Analyses of the nuclear loci show overall moderate to low levels

of genetic diversity across the global range of the Mallee Emu-

wren, with signatures of recent population bottlenecks in two

locations, and local effects of genetic drift in others such that only a

single sampled population showed neither phenomenon (Tables 1,

3 & 4).

FIS values were positive and significant (p = 0.05) for Hattah-

Kulkyne National Park, with two loci (Smm1, Smm3) showing

significant homozygote excess (Table 1). One locus (Mcym4)

showed significant homozygote excess in the Murray Sunset

(Central). Homozygote excess at a locus may indicate the presence

of null alleles; alleles that are not expressed or their product not

detected [62]. However, the detection of homozygote excess for

more than one locus in the same population and without the same

loci showing consistently the same pattern in other locations

suggested that null alleles were probably not the cause. FIS as a

measure of inbreeding is not necessarily closely related to

population or individual fitness [63,64]. Inbreeding has several

meanings depending on the reference population to which

inbreeding values refer (e.g. pedigree inbreeding or homozygosity

through genetic drift and low effective population size) [63,64] and

in addition, departures from Hardy-Weinberg equilibrium may be

observed as a consequence of sampling strategy. Hence caution

should be exercised when interpreting FIS in the absence of other

genetic metrics and demographic information. The Hattah-

Kulkyne National Park population was relatively intensely

sampled over the entire geographical range of this reserve,

consequently this population was probably exhibiting the Wah-

lund effect, where a deficit of heterozygotes in a population is a

result of local sub-population structure (e.g. sampling of multiple

breeding groups or demes)[65]. Although the remaining Mallee

Emu-wren populations showed a mixture of weak positive and

negative FIS, none were significant. Linkage disequilibria were not

detected for any loci pairs.

Allelic diversity (NA) was variable among loci, ranging from 2 to

32 alleles (Table 2). In general, the genetic diversity across all

populations was moderate, based on allelic richness (AR, range

2.92–3.83) and expected heterozygosity (UHe, range 0.43–0.52)

(Table 1). With the exception of the Murray-Sunset (West),

locations were monomorphic for a number of loci that were

variable elsewhere (Table 1) possibly indicating restricted local

effective population size.

Two-thirds of the population pairs showed significant, but low,

allele-frequency-based differentiation. Results were concordant for

most pairwise comparisons of the two metrics (Table 3). Significant

pairwise FST values were low (0.011–0.044). As was expected

based on the theoretical and empirical behaviour of the metrics,

significant Dest values were higher than their respective FST values

(0.077–0.179, Table 3). The Ngarkat Conservation Park popula-

tion showed the greatest level of population differentiation from

the other locations for both measures, which is consistent with this

location being the most geographically distant, the most structur-

ally isolated and having undergone a recent population crash

(Table 3).

Significant (p,0.05) heterozygosity excess was detected for the

Murray-Sunset National Park (East) and Ngarkat Conservation

Park samples under the two-phase mutation model, indicating

evidence of recent bottlenecks in these two populations (Table 4).

Population structure
Overall, we found evidence of very weak population structure

across the global range of the Mallee Emu-wren. STRUCTURE

identified a single genetic cluster (K = 1). Increased power resulting

from the incorporation of spatial information in TESS, revealed

the presence of two weak spatial genetic clusters across the study

region (Figures 2 and 3). Individuals within the geographically

isolated Ngarkat Conservation Park (No. 6) were assigned to one

cluster (cluster 2 in Figure 3). Excluding Murray-Sunset (East)(No.

2), the remaining populations within the Murray-Sunset and

Table 3. Measures of pairwise differentiation for six location
samples of the Mallee Emu-wren based on; i) FST (below the
diagonal) and ii) Dest (above the diagonal).

Population 1 2 3 4 5 6

1 Hattah-
Kulkyne NP

0.101* 0.044 0.077* 0.035 0.122*

2 Murray-
Sunset NP
(East)

0.037* 0.081* 0.105* 0.103* 0.092*

3 Murray-
Sunset NP
(Central)

0.011* 0.014* 0.004 0.020 0.104*

4 Murray
Sunset NP
(West)

0.020* 0.025* 0.000 0.000 0.132*

5 Murray
Sunset NP
(South)

0.002 0.030* 0.000 0.000 0.179*

6 Ngarkat CP 0.027* 0.032* 0.018 0.041* 0.044*

*p,0.05.
doi:10.1371/journal.pone.0059732.t003

Table 4. Results from the BOTTLENECK test of microsatellite
from the six populations.

Population TPM

Hattah-Kulkyne NP 0.213

Murray Sunset NP (East) 0.002*

Murray Sunset NP (Central) 0.188

Murray Sunset NP (West) 0.601

Murray Sunset NP (South) 0.285

Ngarkat Conservation Park 0.004*

Wilcoxon test values (p values) for the two-phase mutation (TPM) model.
*p,0.05.
doi:10.1371/journal.pone.0059732.t004

Population Genetics of the Mallee Emu-Wren
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Hattah-Kulkyne reserve complex (Nos. 1,3,4,5) were more strongly

assigned to the alternative cluster (cluster 1 in Figure 3). The

distinctiveness of the Ngarkat population (for both allele frequency

and genotype-based analyses) is most likely attributed to the recent

population bottleneck and associated local effects of genetic drift

(e.g. fixation and loss of alleles). In addition to the genetic effects of

a recent population bottleneck, the isolation of the southern

reserve complex, which includes Ngarkat CP, from the northern

complex following clearing of vegetation for agriculture in the

early 20th Century [66], may represent a barrier to gene flow that

has contributed to the differentiation of the Ngarkat population.

There was some evidence for weak east-west structure in the

Murray Sunset and Hattah Kulkyne reserve complex, probably

representing contemporary, transient landscape effects or isola-

tion-by-distance effects (Figure 3).

Discussion

We used samples from 72 individual Mallee Emu-wrens from

six separate geographical locations to examine global genetic

structure and population processes in this species. Analyses of

nuclear loci found low to moderate levels of genetic diversity across

the species’ range, and signatures of bottlenecks and local effects of

genetic drift. Surprisingly, we found only weak genetic structure

across the global range of the Mallee Emu-wren, contrary to

expectation given its patchy distribution as a habitat specialist [20]

and their widely presumed poor dispersal ability.

Population viability
Signatures of bottlenecks in Ngarkat Conservation Park and

Murry-Sunset (East) (consistent with reported demographic

declines) and some evidence of genetic drift in other locations,

indicate these localities may have experienced recent declines in

effective population size. Bottlenecked and strongly inbreeding

populations are important to identify for conservation manage-

ment because of genetic threats to individual fitness and

population viability [67,68]. Small, isolated populations rapidly

lose quantitative genetic variation by genetic drift. An increase in

homozygosity at functional genetic diversity may lead to an

increase in the expression of deleterious recessive alleles resulting

in the reduction of individual fitness and inbreeding depression

[18,63,68].

The prevalence of several monomorphic loci and evidence of a

bottleneck in the Ngarkat Conservation Park population (Tables 1

& 4) is consistent with the severe contemporary decline of this

population following a series of fires from 1999 to 2006 that has

resulted in small, isolated groups of Mallee Emu-wrens totalling

fewer than 20 pairs (C. Hedger, personal communication). These

remaining groups are at immediate risk of extinction arising from

stochastic environmental and demographic events and the adverse

genetic affects arising from inbreeding. Although genetic informa-

tion is lacking, the small number of birds detected in the

Wyperfeld/Big Desert reserve complex (n = 2)[20], suggests that

the persistence of the species at this location is likewise precarious.

This complex also recently experienced a large fire (.180 000 ha)

in 2002. With the exception of the Murray-Sunset (West), the

remaining sampling locations were found to have multiple

monomorphic loci, suggesting that these others may have also

experienced declines in effective population size, as borne out by

evidence of a bottleneck in Murray-Sunset (East). In the case of the

Murray-Sunset populations, these genetic patterns may be an

artefact of the low sampling intensity (,1% of the population);

nevertheless, these results are consistent with proportionally

greater sampling of populations in Hattah-Kulkyne NP.

Our results contrast with those from a study of the genetic

effects of a forest fire on the Blue Chaffinch Fingilla teydea polatzeki, a

critically endangered passerine endemic to the island of Gran

Canaria. Despite a 50% decline in the global population of this

sub-species (from about 250 to 122 individuals), temporal sampling

found no genetic signature of a bottleneck. Furthermore, the post-

fire population retained a high level of genetic diversity [69].

Studies directly examining the effect of fire on genetic signatures of

species or populations are rare and, because of the complex nature

of fire regimes, offer little in the way of direct comparison.

Nevertheless, disturbance by fire has been found to reduce genetic

diversity in populations of butterflies [5,26] and has been

attributed to bottlenecks in lizards [70] and anteaters [71].

A second genetic threat to the long-term viability of the Mallee

Emu-wren can presumed to be the erosion of quantitative genetic

variation necessary for adaptive evolution [72]. The capacity for

resilience and adaptive evolution in this species is crucial because

the semi-arid zone of south-eastern Australia, in which it occurs, is

predicted to experience significant reduction in rainfall and more

extreme temperatures with climate change [73]. There is

theoretical and empirical support for the view that populations

with less genetic diversity will be less able to successfully evolve

with environmental change; even to the point of affecting species

distributions [74–76]. While the relationship between neutral

variation and quantitative genetic variation is not strong,

population size can be a good predictor of population fitness

[68,77]. Thus, in as far as the patterns of genetic variation found

here signal relatively low effective population sizes, studies of

fitness would help elucidate the role that genetic variability and

inbreeding may play in this species’ ability to adapt to

environmental change and accordingly its long-term viability.

Figure 2. TESS boxplots for Kmax = 6 (top) and Kmax = 2 (bottom) based on 12 nuclear loci for 72 individuals. NCP = Ngarkat Conservation
Park, MSW = Murray-Sunset (West), MSC = Murray-Sunset (Central), MSS = Murray-Sunset (South), MSE = Murray-Sunset (East).
doi:10.1371/journal.pone.0059732.g002
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Landscape-scale processes
Species with limited effective dispersal are expected to show

spatial genetic structure over large spatial scales. Genetic structure

may be considerable, even over short distances, if the landscape

matrix between habitat patches is perceived by a species to be so

inhospitable as to severely limit dispersal [78]. Contrary to

expectations, we found only weak genetic structure and low

population differentiation among Mallee Emu-wren populations,

despite this species being a very weak flier. Although genetic

differentiation among several of the sampling locations was

significant, the low FST values (0.00–0.044, Table 3) are within

the range of drift connectivity (FST<0.1 and less); that is,

populations have similar allelic frequencies indicating substantial

genetic connectivity (in the order of .10 migrants per generation

[79]. We note that genetic connectivity at the levels detected in this

study does not preclude populations having experienced reduc-

tions in demographic connectivity.

Low population differentiation does not necessarily imply

contemporary genetic connectivity; for example, recently isolated

populations or populations with large effective population size

could show population differentiation in the absence of connec-

tivity because of the time lag before the genetic consequences of

fragmentation and isolation become manifest [50]. However, this

is not likely to be the case with the Mallee Emu-wren:

subpopulations are demographically small and most of the species’

distribution is within an expansive intact landscape. High genetic

connectivity across fragmented landscapes has been demonstrated

for other bird species with low mobility, including the closely allied

Superb Fairy-wren[80,81]. This latter species showed large-scale

gene flow, but even so, landscape change can still have adverse

consequences for fine-scale population processes such as mating

systems and song sharing [80–82].

Collectively, the genetic patterns and population structure

found in this study can be attributed to the spatial and temporal

patterns of fire in mallee ecosystems. Most fires are small (,100 ha

in size), but intense landscape-scale wildfires exceeding 10,000 ha

occur within the region every 10–20 years [83,84]. The spatial

distribution of residual survivors is crucial to understanding the

process of population recovery and its genetic consequences at a

local scale after fire. Population recovery may occur either by

recolonisation by individuals originating beyond the boundary of

the fire footprint, or there may be residual survivors within

unburnt refuges enabling in-situ recovery (i.e. nucleated recovery)

from within the fire footprint [9,16,27]. These contrasting

processes could lead to different genetic signatures in recovering

populations. Extirpation of populations and recolonisation by

founders mostly (but not invariably) leads to population bottle-

necks, founder effects, enhanced effects of drift and the erosion of

genetic diversity [85,86]. In contrast, population recovery from in-

situ survivors is less likely to be accompanied by loss of much

original genetic diversity, except in the presence of very strong,

sustained or repeated bottlenecks [87]. In actuality, these two

processes (recovery based on immigrants vs. nucleated recovery)

are not mutually exclusive but more likely the two extremes of a

continuum.

Given large, severe wildfires dominate the mallee landscape

[88], it is likely that recolonisation exceeds in-situ survival as the

primary means of population recovery of the Mallee Emu-wren.

These large fires (.10,000 ha) create vast homogenous areas in

which the ground layer (including fallen timber), shrub and

canopy strata are all consumed [89]. Denuded of vegetation, the

burnt landscape is unable to support (even temporarily) species

such as the Mallee Emu-wren that depend on mid to late seral-

stage vegetation. Serial founder and recolonisation events resulting

from such fires, have most likely eroded genetic variability in this

species. Recolonisation as a primary driver of population recovery

is consistent with findings of a contemporary study on birds in

mallee ecosystems [27] and for birds in fire-prone Mediterranean

ecosystems of Europe [90]. Recolonisation may also drive

population processes in other species with low mobility and

dependent on ground-cover dependent that inhabit fire-prone

landscapes, such as the Grasswrens Amytornis spp. of the arid-zones

of Australia [29], and the small marsupial, the mallee Ningaui

Ningaui yvonneae [91].

In contrast, recovery from in-situ survival may occur in

environments where fires leave numerous unburnt refuges, as in

the case of the Blue Chaffinch of Gran Canaria discussed earlier.

Unburnt refuges were prevalent throughout the fire area and were

Figure 3. Spatially explicit predictive map of admixture coefficients as determined by TESS for 2 clusters, Kmax = 2. The colour scale
represents the posterior probability of individuals having membership to a single genetic cluster. Black circles represent sampled individuals with
known geographic locations (n = 72). Numbered ellipses indicate the populations; 1 = Hattah-Kulkyne, 2 = Murray-Sunset (East), 3 = Murray-Sunset
(Central), 4 = Murray-Sunset (West), 5 = Murray-Sunset (South) and 6 = Ngarkat Conservation Park.
doi:10.1371/journal.pone.0059732.g003
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thought to enable a sufficient proportion of individuals to survive

and persist, thereby mitigating the loss of genetic variability in the

post-bottleneck population [69]. In-situ survivorship in unburnt

refuges has been attributed to the rapid demographic recovery in

birds (e.g. the fire-sensitive Eastern Bristlebird Dasyornis bachypterus

[92]) and the persistence of species diversity and genetic diversity

in invertebrates following large fires [5,26,93].

Extinction and recolonisation in fire-prone landscapes can also

lead to increased genetic variance and differentiation among some

populations [11,70], but this does not appear to be the situation for

the Mallee Emu-wren. Rather we propose that the shifting patch

mosaic characteristic of mallee shrublands facilitates genetic

connectivity for the Mallee Emu-wren as sub-populations spatially

track suitable successional vegetation (habitat-tracking). In mallee

shrublands, fire is a stand-replacing disturbance, where vegetation

succession is very gradual, peaking in structural complexity at

about 30 years of age. Vegetation also may remain unburnt for

over a century [89]. Where specialist species such as the Mallee

Emu-wren have life-history traits that limit dispersal, successional

patch dynamics will facilitate movement, and hence gene flow,

across the wider landscape. Such gene flow and genetic structure

of sub-populations will be influenced by the rate of the shifting

habitat mosaic. Accumulation of genetic differentiation in

populations of the Mallee Emu-wren may be only transient as

movement among temporally and spatially shifting habitat,

mediated by fire, occurs on a timescale faster than new variation

arises, thus acting to homogenise genetic structure in this species.

Implications for conservation
The apparent genetic connectivity of the Mallee Emu-wren

inferred from the low population differentiation (FST), and weak

genetic structure (STRUCTURE/TESS) is an optimistic message

for the conservation of this species. The lack of marked population

differentiation across its global range means that for management

purposes (e.g. translocation of individuals) this species can be

treated as a single genetic unit. Nevertheless, the finding of

disrupted fine-scale population processes, as illustrated by the

demographic and genetic impoverishment in the Ngarkat Con-

servation Park population, supports implementation of actions to

assist population recovery. Reintroduction programs or the genetic

restoration [72]of the Ngarkat population can be undertaken with

minimal genetic risk from outbreeding depression, which for

species of conservation concern is generally outweighed by

inbreeding depression [94]. That said, other, non-genetic factors

including disease and the demographic impacts of management

interventions also need to be considered [95,96].

Prescribed burning is a tool widely used in fire-prone ecosystems

to reduce the risk to life, to protect ecological and built assets, and

to prevent landscape-scale fires burning extensive areas and

homogenising the landscape [97]. Rare, fire-sensitive species with

low mobility or which are site tenacious, such the Black-eared

Miner [98], the Eastern Bristlebird [92] and the Mallee Emu-

wren, will benefit from approaches to fire management that

prevents large-scale fires. Whilst providing for this broad goal

however, it is imperative that prescribed burns are of appropriate

size and spatio-temporal arrangement (fire mosaic) so as not to

disrupt movement between suitable patches of habitat, allowing

for gene flow among sub-populations. A second aspect to consider

in the development of fire management plans is the importance of

refuges. In-situ residual populations from unburnt refuges can

enhance subsequent recovery to post-fire areas by providing

individuals for population growth [27,90,93]. These immigrants

may also help mitigate the erosion of genetic diversity and

homogenisation within founder populations by contributing new

alleles to the gene pool. Hence, maintaining unburnt patches with

key habitat attributes for specialist species is an appropriate

objective for fire management.
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