This is the published version:

Available from Deakin Research Online:

http://hdl.handle.net/10536/DRO/DU:30059307

Reproduced with the kind permission of the copyright owner.

Copyright : 2009, Australian Archaeological Association
ARCHAEOBOTANY IN AUSTRALIA AND NEW GUINEA: Practice, Potential and Prospects

Tim Denham1, Jennifer Atchison2, Jeremy Austin3, Sheahan Bestel3, Doreen Bowdery4, Alison Crowther3, Nic Dolby1, Andrew Fairbairn5, Judith Field6, Amanda Kennedy5, Carol Lentfer5, Carney Matheson7, Sue Nugent5, Jeff Parr8, Matiu Prebble9, Gail Robertson4,5, Jim Specht10, Robin Torrence10, Huw Barton11, Richard Fullagar12, Simon Haberle4, Mark Horrocks13, Tara Lewis1 and Peter Matthews14

Abstract

Archaeobotany is the study of plant remains from archaeological contexts. Despite Australasian research being at the forefront of several methodological innovations over the last three decades, archaeobotany is now a relatively peripheral concern to most archaeological projects in Australia and New Guinea. In this paper, many practicing archaeobotanists working in these regions argue for a more central role for archaeobotany in standard archaeological practice. An overview of archaeobotanical techniques and applications is presented, the potential for archaeobotany to address key historical research questions is indicated, and initiatives designed to promote archaeobotany and improve current practices are outlined.

Introduction

The study of plant remains from archaeological contexts, or archaeobotany, is a subdiscipline of archaeology that has come to increasing prominence over the last three decades across the globe. Australian archaeology has been at the forefront of several developments in archaeobotany, particularly the use of plant microfossil applications to address archaeological problems, including residue analysis (Loy 1994), phytoliths (Wilson 1985) and starch grain analysis (Barton and White 1993; Loy et al. 1992). Despite ground-breaking work and consolidation in several areas of macrofossil and microfossil research (consider Beck et al. 1989; Bowdery 1998; Hart and Wallis 2003; Torrence and Barton 2006), as well as the importance of plants in primary production and as a resource, archaeobotany has been a relatively peripheral concern for most archaeological projects (academic and consultancy) in Australia and New Guinea.

At a December 2007 meeting at the University of Queensland, archaeobotanists who work in Australia and Papua New Guinea decided to take a more active role in showcasing the potential contributions of archaeobotany. The primary goal is to make the field a more central concern of archaeological practice in this region, as it is in many other countries across the globe. As a first step we offer an overview of archaeobotanical practice in the region, consider its potential to address key historical research questions, and outline initiatives designed to promote archaeobotany and improve current practices.

The call to bring archaeobotany to the core of archaeological practice should not be considered radical. Plants have always been a fundamental component of human economy as they contribute materials for food, medicine, clothing, shelter, tools and other uses. In the continental area of Australia and Papua New Guinea, the specialised use of floristic resources is evident from the late Pleistocene to the recent past. Recorded transformations include major technological innovations such as the advent of seed-grinding, detoxification, arboriculture and agriculture in various parts of Sahul. These technological innovations would doubtless have had an impact on social systems and economies of the time, not to mention material culture associated with subsistence technology. In archaeological practice, it is already unacceptable to leave stone tools or faunal remains at an archaeological site unsampled or unstudied, and it should no longer be acceptable to leave the investigation of plant use unexplored either at the site or in the laboratory. No balanced understanding of human-environment interactions in the past can be expected when there...
is so little information on interactions with plants; relationships that are fundamental to human life.

Archaeobotany: An Overview

Archaeobotanists use a range of techniques to study plant remains from various perspectives. Techniques can be coarsely grouped according to the scale of the samples: macrofossil, microfossil and molecular.

Macrofossils

The study of plant macrofossils is perhaps the most familiar type of archaeological method. Plant remains are collected in the field, whether by direct excavation, sieving of excavated material, or flotation of bulk samples (Fairbairn 2005a; Pearsall 2000). These plant remains tend to be charred and of hardy materials, usually seeds, wood and the hard pit stones of fruits and kernels of nuts, although they occasionally include soft tissues preserved through charring, desiccation, freezing or waterlogging. Macrofossil assemblages, comprising intact and fragmented materials, are sorted and identified to genus or species level where possible using voucher specimens in comparative reference collections. Macrobotanical analysis is invaluable at occupation sites in order to understand food processing and palaeodiet, and is also important more broadly to understand human adaptation, human movements, environmental and plant management, and vegetation history (Crawford 2008; Pearsall 2000), as well as at site taphonomy. Additionally, the analysis and identification of charcoal can inform the selection of samples for radiocarbon dating (i.e. to avoid ‘old wood’) and the interpretation of vegetation history (Smith et al. 1995).

The analysis of archaeological parenchyma – the soft parenchymatous tissue of plants – was conceived as a technique to identify root crops that were formerly ‘invisible’ archaeobotanically at archaeological sites (Hather 1993, 2000). The technique is generally considered macrobotanical, although it can also be microbotanical depending on the size and fragmentation of plant remains. Despite its potential, especially for understanding traditional plant exploitation in Australia and New Guinea, the analysis of archaeological parenchyma has not been widely adopted, relevant reference collections have not been established, training has been limited and, consequently, the technique has been eclipsed by others, principally phytolith and starch grain analyses (see below). At present, the analysis of archaeological parenchyma occurs as an incidental activity accompanying other forms of archaeobotany.

In Australia, macrobotanical research has been limited by poor preservation and, perhaps more importantly, by inadequate field sampling strategies. Charred material, mainly wood charcoal, is very common at most sites, but has been rarely analysed beyond occurrence and dating (although see Boyd et al. 2000; Dolby 1995; Hope 1988; Smith et al. 1995). Early applications of macrofossil research included Beaton’s (1982; followed by Beck 1992) investigations of cycad use by Aboriginal people and Clarke’s (1989) contribution to archaeological research in Kakadu National Park. Following an apparent hiatus (although see McConnell and O’Connor 1997), recent investigations have shed light on complex plant management practices from seed remains in the Kimberley (Atchison et al. 2005) and semi-arid New South Wales (Fullagar et al. 2008), and nuts and charcoal preserved in the wet tropics of northeast Queensland (see Cosgrove et al. 2007), and the diets of urban dwellers following European settlement (Fairbairn 2007), as well as included re-evaluations of previous work (Asmussen 2005).

In Papua New Guinea, macrobotanical research has not been systematically applied at most sites, although it has been a feature of multidisciplinary investigations of early agriculture at wetlands in the highlands since the 1960s (e.g. Powell 1970, 1982) and has figured in studies of key Lapita sites (Lepofsky et al. 1998; Matthews and Gosden 1997). Given the relative paucity of archaeobotanical information for New Guinea and Melanesia, but the known development of agriculture (Golson 2007) and arboriculture (Yen 1996) in this region, most published archaeobotanical studies are of considerable significance, such as those for Pleistocene occupation at Kosipe in highland New Guinea (Fairbairn et al. 2006), and for Holocene sites in lowland New Guinea (Swadling et al. 1991; cf. Fairbairn and Swadling 2005) and Island Melanesia (Gosden and Webb 1994; Lepofsky et al. 1998; Matthews and Gosden 1997). However, major lacunae remain; for example, archaeobotanical studies have shed very little light on the distribution, dispersal and domestication of several food plants – including bananas, sugarcane, taro and yams – within the New Guinea region, in comparison with genetic and molecular analyses (e.g. Lebot 1999). Contributory factors certainly include the lack of analysis and limited publication, for various reasons, of several archaeobotanical assemblages, including those from Kuk Swamp (although see Denham 2003:Appendix G1), Manim 2 (Christensen 1975; cf. Donoghue 1989), Seraba/Kowekau (Gorecki 1993; cf. Yen 1996), and of Lapita sites in Island Melanesia. Often, only selected and more-easily-identified components of assemblages are analysed, while other components – especially wood and charcoal – are left unexamined.

Macrobotanical analyses at archaeological sites in Australia and New Guinea have often been complemented by ethnographic accounts of plant use (e.g. Gott 1983, 1999), and engagement with Indigenous people who share traditional knowledge about plant use (see Atchison et al. 2005 and Cosgrove et al. 2007 for recent Australian examples). In this part of the world, as elsewhere, archaeological research has often been enriched by an engagement with anthropology and ethnobotany.

Microfossils

Over the last three decades, several microfossil techniques have been applied to archaeological problems, most significantly the analysis of pollen, phytoliths and starch grains. Techniques have been applied to bulk samples of soil, sediment and feature fill and to residues extracted from wooden, stone or ceramic artefacts and teeth.

Palynology employs a relatively well-known set of techniques for the extraction of pollen and spores, and their identification to family, genus or species level (Faegri and Iversen 1989). Palynology, in conjunction with micro-charcoal counts, has been the primary tool of palaeoecological reconstruction, by providing a record of how vegetation has changed through time and by allowing inferences to be made about the contribution of people’s activities to environmental change. Such palaeoecological reconstructions have been based on samples from archaeological sites (Dimbleby 1985) and also from complementary off-site
locations that situate archaeological remains and the human processes they represent within broader environmental contexts, or within broader environmental archaeological investigations (Evans and O’Connor 1999).

A major focus of palynology in Australia has been the study of the impacts of Aboriginal people on the environment, principally through the use of fire to manage the landscape and increase resource density, both of animals (Bowman et al. 2001) and plants (Gott 2005; Jones 1969). Other research foci include the effects of initial colonisation on the environment (Kershaw et al. 2006), with potential implications for megafaunal extinction (Miller et al. 2005), although these interpretations are much debated due to varying chronologies for the colonisation of Australia (e.g. O’Connell and Allen 2007). Regional chronologies for Pleistocene or Holocene burning and vegetation change have been established for the Lake Condah region of southwestern Victoria (Builth et al. 2008), Sydney Basin (Black et al. 2008), Atherton Tablelands of northeastern Queensland (Kershaw et al. 2007), Torres Strait (Rowe 2006a), and elsewhere. Additionally, high-resolution records have been used to understand climatic and anthropogenic drivers of environmental change over the last 1000 years (Haberle et al. 2006).

Palynology in New Guinea has been used to reconstruct the human role in vegetation history (Haberle 1994, 2007; Hope 1980, 1998), especially with respect to human colonisation of new environments and the emergence of agriculture and its subsequent transformation and diffusion (Denham and Haberle 2008; Powell 1982). The approach has complemented archaeological investigations in New Guinea to a much greater extent than in Australia, in terms of both on-site (e.g. several wetland sites in the highlands of New Guinea: Denham et al. 2003; Powell 1970) and off-site (e.g. Kosipe: Hope 1982; Hope and Golson 1995) applications. The presence and proportion of diagnostic vegetation communities have been identified, including secondary growth, anthropogenic grasslands and weedy species (Haberle 1994), as well as economically significant plants (e.g. taro, Colocasia esculenta: Garrett-Jones 1979; Haberle 1995).

Phytoliths are another type of plant microfossil. They are siliceous, or occasionally calcareous concretions that form in the intra- and inter-cellular spaces of plants (Piperno 2006). After the decay of a plant or plant part, phytoliths may be incorporated through various taphonomic processes into archaeological and palaeoecological deposits (Wallis 2000a, 2006b). Unlike pollen, there is not necessarily a single phytolith morphotype that is characteristic of a particular plant taxon; rather, some plant species produce numerous phytolith morphotypes whereas others produce none. In some cases, a combination of phytolith morphologies is diagnostic of a specific genus or species, for example in some grasses, which are difficult to distinguish using pollen. Of great significance for archaeology and palaeoecology, phytoliths are often preserved in depositional settings where macrobotanical remains and pollen have decayed. Consequently phytolith analysis has great potential for application in the arid, semi-arid, monsoonal and wet, subtropical and tropical regions of Sahul.

In archaeology, phytoliths have been used to identify plants to the family level, and less often to the genus and species levels. They have successfully been used to chart the chronological transformation or dispersal of plants undergoing domestication (Piperno and Pearsall 1998; Piperno and Stothert 2003); track vegetation changes resulting from human interference in ecosystems (Boyd et al. 2005; Lentfer et al. 2002; Lentfer and Torrence 2007); and to study tool uses (Fullagar 1993; Kealhofer et al. 1999).

A pioneering study at Kuk Swamp sought to identify and discriminate banana (Musa spp.) phytoliths and infer vegetation history during the Holocene (Wilson 1985; also see Fujiwara et al. 1985 for a comparable example from Australia). Wilson’s work laid a foundation for the discrimination of bananas using phytoliths in New Guinea (Bowdery 1999; Denham et al. 2003; Horrocks et al. 2008), the Torres Strait (Parr and Carter 2003), Island Melanesia (Lentfer and Green 2004), and elsewhere (e.g. Mbida et al. 2001). Studies of vegetation history based on phytoliths have greatly augmented the interpretation of several archaeological sites in arid Australia – principally Puritjarra (Bowdery 1998) and Carpenter’s Gap (Wallis 2000a, 2001), and the wet tropics of New Guinea – principally Kuk (Denham et al. 2004) and sites on the Willaumez Peninsula, New Britain (Boyd et al. 2005; Lentfer 2003; Lentfer and Torrence 2007; Parr 2003; Parr et al. 2001). Like pollen and macrofossils, phytoliths of introduced plants, particularly exotic cereals, have served as chronological markers of European settlement and resultant environmental change in Australia (Lentfer et al. 1997). Additionally, experimental work has confirmed the potential of carbon secured within the silica casing of phytoliths for radiocarbon dating (Parr and Sullivan 2005).

The analysis of starch grains, or granules, is a more recent addition to the suite of microfossil techniques used by archaeobotanists to detect and identify plant remains. Starch grains are microscopic components derived from various plant parts; they are mainly located in storage organs such as tubers, nuts and trunk pith, but may also include metabolic starch that is formed in photosynthetic (green) leaves and stems (Field 2008; Torrence and Barton 2006). Starch is entrained in archaeological deposits, sediments and soils after a plant dies or a plant part decays (i.e. decaying food remains), although the taphonomy and geochemistry of starch preservation in the burial environment is poorly known (Barton and Matthews 2006; Haslam 2004). As with pollen and phytoliths, diagnostic starch grains can augment vegetation and land-use histories (Lentfer et al. 2002; Therin et al. 1999), identify specific plant species (e.g. Barton 2005; Dickau et al. 2007; Horrocks and Nunn 2007) and chart domesticatory relationships through time (e.g. Piperno and Holst 1998), with the latter two applications predominating. More recently, the direct radiocarbon dating of starch has established an important advance in documenting the initial use and expansion of maize in South America (Zarillo et al. 2008).

Some of the earliest and most innovative archaeological applications of starch grain analysis occurred in Australian laboratories that used starch in the interpretation of tool use (Barton and White 1993; Fullagar 1993; Loy 1994; Loy et al. 1992) and hafting (Bowdery 2001), and pioneered its study in the reconstruction of vegetation history (Lentfer et al. 2002; Therin et al. 1999). This work has continued (see Torrence and Barton 2006) with recent studies revealing food processing using Pleistocene-aged grinding stones at Cuddie Springs (Fullagar et al. 2008), at an early agricultural site in the highlands of New Guinea (Fullagar et al. 2006), in the tropical rainforests of northeastern
Queensland (Cosgrove et al. 2007), and in the western Pacific (Crowther 2005; Horrocks and Bedford 2005). The need for broader applications is considerable given that flaked stone tools of Pleistocene age in Australia and New Guinea are likely to have been used to exploit plants as much as, and if not more than, animals (Fullagar 1986, 1992; Hayden 1977; White and Thomas 1972). Stone tools dominate archaeological assemblages in Australia and yet knowledge of plant exploitation in these regions, particularly during the Pleistocene, is extremely limited (Denham et al. in press). Studies have begun to investigate and demonstrate the survival of starch residues on archaeological and ethnographic artefacts held in museum, university and private collections (Barton 2007; Field et al. in press; Fullagar et al. 2006; Nugent 2006).

Resins, a plant exudate, are known to have been used by Aboriginal Australian people as a sealant, adhesive and fixative for hafting, namely to attach a handle to a stone tool. The resin was heated, sometimes reinforced with beeswax, ash, fine sand or plant fibres, and fashioned into place (see Parr 2002). As a residue on artefacts, resin is relatively long-lasting in the archaeological record. The identification of archaeological resins provides valuable information on the manufacture and function of hafted tools, as well as the role of specific resins within exchange and social relationships. For example, many archaeologists believe that Australian backed artefacts, called microliths elsewhere in the world, required hafting and evidence derived from resins suggests this was often the case (e.g. Boot 1993; Robertson 2005; Therin 2000). Several methods have been employed to assist in identifying archaeological resins, including visual appearance of the raw material (Boot 1993), gas-liquid chromatography and thin-layer chromatography (Bowden and Reynolds 1982; Parr 1999), ascending paper chromatography (Boot 1993), high performance liquid chromatography (Welch 1997), and starch analysis (Parr 2002).

Molecular

The principal molecular technique of potential archaeobotanical relevance in the Australian region is the analysis of ancient DNA (aDNA). Analysis of aDNA has yielded significant results over the last 10–15 years (Willerslev and Cooper 2005), especially for understanding plant domestication (e.g. Allaby et al. 1994; Jaenicke-Després et al. 2003). The extraction of ancient DNA from plants (Gugerli et al. 2005; Schlumbaum et al. 2008), however, is relatively difficult and has yet to be successful for Australian or New Guinean samples. The preservation of DNA for long periods of time in a condition suitable for analysis requires very particular circumstances. If suitable archaeobotanical materials can be found for aDNA analysis, then there is great potential for using this approach to investigate the exploitation, management and human transport of plants in Australia and New Guinea.

Further chemical and physico-chemical methods can be used to analyse a great variety of biomolecules that can be recovered from archaeobotanical remains. The biomolecules can include proteins, fatty acids, terpenes, phenols, oils, waxes, nucleic acids and biomarkers. Biomarkers are chemical compounds that are found in a specific plant source and examples include: caffeine, theobromine and xanthine to identify the presence of cacao (Hall et al. 1988); tartaric acid to identify the presence of wine (McGovern et al. 1996); and, the tetrahydropyridine alkaloids arecoline, arecaidine, guvacine and guvacoline to identify betel nut (Oxenham et al. 2002). Techniques used to analyse biomolecules, either singularly or in combination, include spectroscopy, chromatography and electrophoresis:

- raman spectroscopy and infrared spectroscopy to chemically characterise a variety of plant materials, particularly archaeological resins (de Faria et al. 2004);
- nuclear magnetic resonance spectroscopy to identify resins and wood (Maccotta et al. 2005);
- mass spectroscopy detection of archaeological plant residues and resin identification (Evans and Donahue 2005; Oudemans et al. 2007);
- gas chromatography to analyse plant residues and oils on ceramic vessels (e.g. Evershed et al. 2003); and
- gas chromatography-mass spectrometry to identify date palm, palm oil and resins, tobacco in pipe residue, and biomarkers of wine in residues from ceramic vessels (Copley et al. 2001; Guasch-Jane et al. 2006).

As the technology and application of these analyses improve, they will contribute greatly to our ability to interpret plant use in the past.

Potential Opportunities

Archaeobotanical techniques have considerable potential to contribute in major ways to several key areas of archaeological enquiry, particularly when used in combination with other subfields of archaeology. Some of the most high-profile opportunities are noted below.

Human Adaptation to Environmental Change

Current debates on human responses to environmental change, including climatic factors, are couched in long-term historical frameworks (e.g. Diamond 2005). Without a more detailed understanding of human-environment interactions through time, including how people adapted to and transformed the faunal, floral and inanimate components of their environment, the evidence from Sahul will continue to have little new information to contribute to global debates. The Sahulian evidence will remain locked into generalised frameworks of human behaviour and environmental change, including highly speculative debates on extinctions, resource exploitation and burning, with limited understanding of social processes. Without the kinds of detail provided by archaeobotany, the frames of reference for these debates will remain more firmly rooted in assumptions from the present than in evidence from the past.

Colonisation of Sahul

Without more archaeobotanical information, our understanding of how people colonised Sahul and adapted to the diverse continent will remain extremely limited. Most information regarding the Pleistocene occupation of Australia is derived from faunal and lithic assemblages, supplemented by some physical anthropology; comparable archaeobotanical information is extremely sparse (Denham et al. in press). Plants are likely to have contributed significantly to diets and have facilitated adaptation to environmental zones across the continent from initial colonisation. Although research has been hindered by
Aboriginal Diets and Health

The early dates for agriculture in the highlands raise questions concerning the development of subsistence strategies in the lowlands, where the locations, timing and transformation of early domesticatory relationships and cultivation are especially under-researched. Only through the systematic application of archaeobotanical techniques to previously excavated collections and at newly excavated sites can the history of plant exploitation in New Guinea and neighbouring Island Melanesia be fully understood.

Aboriginal Diets and Health

Isotopic and palaeopathological research has shed some light on general constituents to the diet and health of Aboriginal populations in the past (e.g. Pate 1997, 1998; Webb 1995; see Larsen 2000). As in other spheres, there is missing detail on exactly what foods people ate, how people obtained food, the range and proportions of foods consumed, the effects of diet on human health, and how these all transformed through time. Such concerns are not of arcane relevance. Questions such as, ‘why did people increasingly process toxic plants for food in some areas of Australia?’ can lead to a deeper understanding of traditional diets and inform current initiatives to improve Aboriginal health (O’Dea 1992; O’Dea and Spargo 1982).

Archaeobotanical Initiatives and Proposals

A working group, titled ‘Archaeobotany in New Guinea and Australia’ (ANGA), has been established to promote, develop initiatives and provide a point of contact for archaeobotany in the region. Several initiatives have already been proposed and are beginning to be implemented by the ANGA working group to overcome the relative marginalisation of archaeobotany within mainstream archaeological practice in Australia and New Guinea. Any feedback, additional suggestions and participation are most welcome.

Redefinition of Standard and Acceptable Archaeological Practice

If archaeobotany is to be at the core of archaeological practice, it needs to be a standard aspect of most field projects, whether academic or consultancy, as it is in the United Kingdom (English Heritage 2002) and some parts of Europe and North America (Holloway 1997). This point is well-illustrated by several projects in the Sahulian region that have taken archaeobotany seriously and that have each yielded findings of global import. These include the multidisciplinary investigations at Kuk Swamp in the 1970s directed by Jack Golson and from the 1990s directed by Tim Denham, research ongoing in the West New Britain Project since the early 1990s led by Robin Torrence and Bill Boyd, as well as the aforementioned investigations of plant exploitation in the monsoonal savanna of the Kimberley (Atchison et al. 2005) and the tropical rainforests of northeastern Queensland (Cosgrove et al. 2007). The success of these projects derives from the integration of archaeobotany at the initial stages of planning.

The nature of archaeological investigations, especially those involving excavation, should be determined through consultation with an archaeobotanist before the fieldwork occurs, preferably at the planning stages so that sufficient resources — people, time, money and equipment — can be allocated. Archaeobotanists should be present in the field, undertake their own sampling, processing and analysis in accordance with standard protocols, and be trusted to integrate their research and findings into the aims of the archaeological project as a whole.

Too often, the role of archaeobotany has been a post facto, or post-excavation, afterthought. Archaeobotanists have not usually been involved in the planning or fieldwork. Habitually they are given samples after fieldwork has been completed with a specific set of predetermined analyses and questions in mind, or a separate reinvestigation of a site has occurred in order to obtain samples for a specific archaeobotanical project. Although highly valuable information may have been garnered, without proper planning and consultation there is a lingering sense of ‘what if ...?’ had the project been devised and implemented with archaeobotany as a core concern, along with stone tools, faunal remains and such like.

Members of the ANGA working group are actively promoting archaeobotany in several ways:

• hold their own annual meeting at each Australian Archaeological Association Annual Conference, comprising an open session showcasing recent work to the whole...
archaeological community and a more specialised workshop on archaeobotany;

- the proactive promotion of archaeobotany in academic arenas inside and outside archaeology, including earth and environmental science meetings and public-oriented publications;

- provide education within the discipline to improve current practices, through courses taught at universities and through collaborations with colleagues; and,

- work with Aboriginal communities and academic reference groups in regard to plant processing and land management.

The group has also initiated specific projects to address the immediate needs of the archaeobotanical community in Australia.

Curation of Archaeobotanical, Ethnographic and Reference Collections

Linked to a realignment of archaeobotany within the discipline is a need to take the curation of collections seriously. Three main kinds of collection are important: archaeobotanical assemblages recovered from excavations; historical and ethnographic collections; and modern collections of reference materials. Samples, whether macrobotanical assemblages or microfossil slides and extractions, require proper handling, storage and access protocols so that they are not lost in one-off studies and reports, and are available to other researchers in the future. Many ethnographic collections have never been examined in order to identify the materials from which traditional artefacts were made. The potential value of ethnographic collections to archaeobotany has received little attention. Finally, although modern plant collections in biological research institutions (herbaria) are extensive, separate reference collections are needed to allow destructive analysis of reference samples for certain kinds of comparison with archaeobotanical samples.

Many collections that have taken years to assemble languish in inadequate store rooms after a student has finished a project or a specialist has retired; others have already been lost. Yet these collections are sorely needed by, and can serve as a foundation for other researchers. Given the lack of adequate facilities and resource allocation at most universities and contract organisations, there is an urgent need for a national archaeobotanical repository at which archaeobotanical and reference collections can be deposited once a study or line of research has been completed. Members of the ANGA working group are currently negotiating with several state and national herbaria with a view to establishing a national archaeobotanical repository, which can also store archaeobotanical collections from Papua New Guinea under arrangement with and permission from the Papua New Guinea National Museum and Art Gallery.

Knowledge Dissemination and Online Database

ANGA is working to establish a database for Australia and New Guinea with the following components (also see Barker 2000; Rowe 2006b; Rowe et al. 2007):

- metadata for archaeobotanical projects in the region;

- detailed data on archaeobotanical materials at each site, including accession lists with associated information and graphics (where possible); and

- detailed data of reference materials, including database records and graphics.

The database is intended to encourage data sharing and to preserve data in online repositories, information that is often locked away in theses, personal archives, storerooms and garages. Although considerable effort will be needed to establish the database, it will then only require diligence to ensure its continuing development and currency. The database will be accessible through the Archaeobotany Net website (http://archaeobotany.ning.com), which is being developed to provide an archaeobotany network for the Asia-Pacific region. The open access website will provide information about archaeobotany generally and support links to ANGA, and will be a forum for posting information, queries and communication among working group members, as well as other interested people.

Career Development and Resource Rationalisation

A more central role for archaeobotany in archaeological practice in the Australia and New Guinea region will encourage specialist retention. At present, postgraduate students who have trained and conducted research in a sphere of archaeobotany have limited opportunity for employment in their field. A few are able to find full-time employment as archaeobotanists, notably as postdoctoral fellows and occasionally as lecturers, although the former often lack continuity of employment. Most take generalist positions in either academic or commercial sectors, because their skills are usually viewed as too specialised and restricted. However, if the role of plants as a fundamental aspect of the occupation of Sahul from colonisation onwards is accepted, and if the ability of archaeobotany to address fundamental questions concerning the human condition is appreciated, then the scope of this field and the potential for specialist retention and development are much greater than currently acknowledged.

Furthermore, rationalisation is required to maximise resources, especially given the fiscal constraints within the university sector and the investment needed to assemble and curate reference collections. Why train specialists and fund facilities if there is no long-term vision within the discipline for continuity of employment and use? Furthermore, why train more people in the same field if there are already trained specialists who are not utilised? How can we maximise effective use of available resources within the discipline as a whole? Given the limitations of public funding generally, and particularly in terms of archaeobotany, it makes sense to rationalise the distribution of resources, training and specialisations among universities, and to develop stronger partnerships with the commercial sector. Cross-organisational communication, rationalisation and partnership are essential for archaeobotanists working in Australia and New Guinea; ANGA will provide a forum and the advocacy for these things to happen.

Looking to the Future

In this appraisal, a more central role for archaeobotany in standard archaeological practice across Australia and New Guinea is advocated. A range of macrofossil, microfossil and molecular techniques are reviewed, together with a consideration of their application to archaeological problems in Australia and
Acknowledgments

Many thanks to Bruno David, Lynley Wallis and Patrick Moss for their constructive comments on the original manuscript. The archaeobotanical workshop at The University of Queensland was organised by Tim Denham, Carol Lentfer and Andy Fairbairn. The meeting was the second in a series of workshops exploring the current state of interdisciplinary knowledge on plant management in Australia and New Guinea convened by Tim Denham. The first workshop focussed on plant exploitation practices in Australia and New Guinea (Denham 2008), whereas the second focused on the archaeobotanical methods used to investigate plant exploitation in the past. A third workshop at the Australian Museum in early 2008, co-organised with Robin Torrence, focused on devising multidisciplinary research strategies to investigate traditional forms of plant exploitation in Australia and their effects on vegetation communities and biodiversity. The workshop series is funded by a broader initiative, the ARC-funded Environmental Futures Network (http://www.adelaide.edu.au/efn/).

Attendees at the University of Queensland workshop were: Jennifer Atchison, Jeremy Austin, Sheahan Bestel, Doreen Bowdery, Alison Crowther, Tim Denham, Nic Dobly, Andrew Fairbairn, Judith Field, Claire Harris, Amanda Kennedy, Carol Lentfer, Carney Matheson, Sue Nugent, Jeff Parr, Matiu Prebble, Gail Robertson, Jim Specht, Robin Torrence. Invitees who were unable to attend include Huw Barton, Richard Cosgrove, Richard Fullagar, Mark Horrocks, Tara Lewis, Peter Matthews and Lynley Wallis.

References

Barton, H. 2005 The case for rainforest foragers: The starch record at Niah Cave, Sarawak. Asian Perspectives 44:56-72.

Number 68, June 2009

