This is the published version


Available from Deakin Research Online

http://hdl.handle.net/10536/DRO/DU:30071205

Reproduced with the kind permission of the copyright owner

Copyright: 2014, Society of Biological Psychiatry
1118. Nucleus Accumbens Deep Brain Stimulation in an Animal Model of Antidepressant Resistance: Dopamine Dysregulation and Antidepressant-induced Mania

Yesul Kim1,2, Adam J. Walker1,2, Mohamed K. A. Ezzat1, Rajas Kale1,2, Shari Sutor1, Kevin E. Bennett1, Abbas Z. Kouzani1, Kendall H. Lee5, Michael Berk6,7, Susannah J. Tye1

1Department of Psychiatry and Psychology, Mayo Clinic, Rochester, MN, 2School of Psychology, Deakin University, Melbourne, Australia, 3School of Engineering, Deakin University, Geelong, Australia, 4Division of Engineering, Mayo Clinic, Rochester, MN, 5Department of Neurologic Surgery, Mayo Clinic, Rochester, MN, 6School of Medicine, Deakin University, Geelong, Australia, 7Department of Psychiatry, The University of Melbourne, Melbourne, Australia

Background: Dysregulated hypothalamic-pituitary-adrenal axis activity and dopamine neurotransmission are implicated in mood dysregulation, antidepressant efficacy and antidepressant-induced mania.

Methods: Adrenocorticotropic hormone (ACTH) (100µg/d) was administered for 21 days in rat and antidepressant efficacy of imipramine (10mg/kg) was assessed in the Open Field Test (OFT) and Forced Swim Test (FST) on day 15. Imipramine-resistant animals then received 7 days of bilateral nucleus accumbens (NAc) deep brain stimulation (DBS; 130 Hz, 200µA, 90µSec) followed by OFT and FST. In addition, the effects of NAc DBS on ventral tegmental area (VTA) stimulation-evoked NAc dopamine release were monitored in ACTH-treated and control rats using fast scan cyclic voltammetry.
Results: ACTH pre-treatment blocked imipramine-mediated reductions of immobility in the FST (n=10; p<0.05). NAc DBS effectively reduced immobility in ACTH-treated animals (n=8; p<0.05). No significant reduction in immobility was observed in sham groups/animals (n=8; p>0.05). Interestingly, a proportion (33%; n=5) of the ACTH-treated animals (DBS & Sham) displayed increased locomotor activity in the open field test, and exaggerated escape behaviors in the FST. Correspondingly, DBS of the NAc significantly potentiated VTA-evoked transient NAc dopamine efflux in antidepressant-resistant animals.

Conclusions: This study demonstrated NAc DBS is an effective antidepressant treatment in animals non-responsive to imipramine. Observations of hyperactivity, augmented antidepressant response behaviors and potentiated phasic dopamine efflux suggest disruption of mesoaccumbens signaling in ACTH-treated animals contributing to the development of a mania-like behavior in a subset of vulnerable individuals. Further studies are needed to understand mechanisms mediating this effect.

Keywords: Nucleus Accumbens, Deep brain stimulation, Dopamine, Mania, Antidepressant resistance

Supported By: State of Minnesota