High-intensity interval training on cognitive and mental health in adolescents

This is the accepted manuscript.

This is a non-final version of an article published in final form in:


Available online at: [http://www.dx.doi.org/10.1249/MSS.0000000000000993](http://www.dx.doi.org/10.1249/MSS.0000000000000993)

©2016, American College of Sports Medicine

Downloaded from DRO: [http://hdl.handle.net/10536/DRO/DU:30084697](http://hdl.handle.net/10536/DRO/DU:30084697)
High-Intensity Interval Training on Cognitive and Mental Health in Adolescents

Sarah A. Costigan¹, Narelle Eather¹, Ronald C. Plotnikoff¹, Charles H. Hillman², and David R. Lubans¹

¹Priority Research Centre in Physical Activity and Nutrition, School of Education, University of Newcastle, Callaghan Campus, Australia; ²Department of Kinesiology & Community Health, University of Illinois, Urbana, IL

Corresponding author:
David Lubans, PhD
School of Education
Faculty of Education and Arts
The University of Newcastle
University Drive
Callaghan NSW Australia 2308
+ 61 2 4921 2049 (Phone)
+ 61 2 4921 2084 (Fax)
David.Lubans@newcastle.edu.au
Source of Funding: This project was supported by a Hunter Medical Research Institute Project Grant.

Conflicts of Interest: There are no conflicts of interest.

Trial Registration: Australian and New Zealand Clinical Trials Registry (ACTRN12614000729628)

Running title: Impact of HIIT on cognitive and mental health
ABSTRACT

Purpose: Emerging literature suggests that physical activity and fitness may have a positive impact on cognitive and mental health for adolescents. The purpose of the current study was to evaluate the efficacy of two high intensity interval training (HIIT) protocols for improving cognitive and mental health outcomes (executive function, psychological wellbeing, psychological distress and physical self-concept) in adolescents. Methods: Participants (n=65; mean age=15.8±0.6) were randomized to three conditions: aerobic exercise program (AEP; n=21), resistance and aerobic exercise program (RAP; n=22) and control (n=22). HIIT sessions (8-10min/session) were delivered during physical education lessons or at lunchtime three times/week for 8-weeks. Assessments were conducted at baseline and immediate post-intervention to detect changes in executive function (Trail Making Test, TMT), psychological wellbeing, psychological distress and physical self-description, by researchers blinded to treatment allocation. Intervention effects were examined using linear mixed models. Cohen's d effect sizes and clinical inference were also calculated. Results: Small improvements in executive function (d=-0.32, 95%CI -9.12 to 9.77; p=0.386) and psychological wellbeing (d=0.34, 95% CI -1.73 to 2.37; p=0.252) were evident in the AEP group. Moderate improvements in executive function (d=-0.51, 95% CI -8.92 to 9.73; p=0.171), and small improvements in wellbeing (d=0.35, 95%CI -1.46 to 2.53; p=0.219) and perceived appearance (d=0.35, 95%CI -0.74 to 0.41; p=0.249), were observed for the RAP group. Mean feelings state scores improved from pre-workout to post-post workout in both HIIT conditions, with significant results for the AEP (p=0.001). Conclusions: This study highlights the potential of embedding HIIT within the school day for improving cognitive and mental health among adolescents. Key words: High intensity interval training; Cognitive health; Mental health; Adolescents
INTRODUCTION

Regular participation in physical activity is associated with a wide range of physical health benefits for young people, including improvements in body composition, physical capacity, and overall health-related indicators (e.g., blood pressure, insulin resistance, lipid profile)(20). Emerging literature also suggests that physical activity and fitness may have a positive impact on mental health outcomes for youth (e.g., depression and anxiety)(34). Furthermore, it has been suggested that participation in physical activity and the attainment of high levels of physical fitness are linked to enhanced brain structure and function, cognition, and academic performance, via direct and indirect physiological, cognitive, emotional, and learning mechanisms(17).

Despite the extensive benefits of an active lifestyle, approximately 80% of young people across the globe do not achieve the international physical activity recommendations of 60 minutes/day(16) and trends in this generation show a secular decline in health-related physical fitness (especially cardiorespiratory fitness)(5). These findings, combined with the dramatic decline in physical activity(33) typically observed during adolescence (7% per year from age 12 to 19)(14), highlight the need for effective solutions to the inactivity pandemic. However, physical activity and fitness interventions targeting adolescents have been largely unsuccessful(13), and developing innovative and time efficient strategies that provide potent health benefits for young people are urgently needed.

High intensity interval training (HIIT) has emerged as a feasible and efficacious strategy for increasing physical health outcomes in young people(9, 25). HIIT involves either (a) short or
long intervals (from \(\leq 45\) seconds to 2-4 minutes) of high intensity exercise (e.g., \(>85\%\) max heart rate) interspersed by short rest periods, or (b) reoccurring short or long (<10 seconds to 20-30 seconds) bouts of maximal sprints, interspersed by a prolonged rest period between exercises(8). The main appeal of HIIT is that it can be completed in a short period of time whilst resulting in equivalent physiological adaptations to longer sessions of traditional aerobic training(8). There is strong evidence indicating that HIIT can improve physical health(9, 22), with additional evidence demonstrating a positive impact on depression(41), sleep quality(41) and emotional wellbeing(1) in a range of adult population groups (e.g., older adults, cancer patients, cancer survivors). However, little is known regarding the impact of HIIT on cognitive and mental health outcomes in adolescent populations.

Mental health is not merely the absence of a mental illness, but a state of positive wellbeing and effective functioning in which an individual realizes his or her potential and is able to make a positive contribution to his or her community(44). Therefore, indicators of mental health can be classified into three broad categories: cognitive function (e.g., attention, perception, memory), wellbeing (e.g., self-concept, eudemonic wellbeing), and ill-being (e.g., depression and anxiety). Relative to cognition, the strongest relationship for physical activity appears for tasks or task components that require extensive amounts of executive function (i.e., the intentional component of environmental interaction entailing processes such as inhibition, working memory, and cognitive flexibility)(18). Considering the global inactivity pandemic and the large numbers of adolescents who have been diagnosed as having a mental illness(35), the current study was designed to evaluate the efficacy of two HIIT protocols [Aerobic Exercise Program (AEP) and Resistance and Aerobic Program (RAP)] for improving cognitive and mental
health outcomes (executive function, psychological wellbeing, psychological distress and physical self-concept) in a sample of adolescents from one secondary school in New South Wales, Australia.

METHODS

Study design and participants

The study methods have been described in detail previously(10). Briefly, ethical approval to conduct the study was gained from the University of Newcastle Human Research Ethics Committee (H-2014-0083). The study protocol was registered with the Australian and New Zealand Clinical Trials Registry (ACTRN1261400729628). The school principal, parents and study participants provided written informed consent to participate in the study. Study participants (n=65) were students in grade 9-10 (ages 14-16 years) attending the study school. The design, conduct and reporting for this randomized controlled trial (RCT) adhered to the Consolidated Standards of Reporting Trials (CONSORT) guidelines(32).

A three-arm school-based RCT was conducted with adolescents from one secondary school. The HIIT sessions ranged from eight to ten minutes in duration (weeks 1-3: 8 minutes; weeks 4-6: 9 minutes; weeks 7-8: 10 minutes), with a work to rest ratio of 30sec:30sec. The AEP and RAP sessions were delivered by the research team at the study school.

Our first study examined changes in health-related fitness outcomes associated with the two HIIT protocols(10). Briefly, a small intervention effect was evident for cardiorespiratory fitness in the RAP group; participants in the AEP and RAP groups had moderate intervention effects for waist circumference (AEP: Mean Change -1.5 ( 95% CI -3.4, 0.4), d=-0.5; RAP:
Mean Change -2.1, 95% CI -4.0, -0.3, \( d = -0.7 \), BMI (AEP: Mean Change -0.27 (95% CI -0.57, 0.04), \( d = -0.5 \); RAP: Mean Change -0.28, 95% CI -0.57, 0.02, \( d = -0.5 \), and BMI-z (AEP: Mean Change -0.10 (95% CI -0.20, -0.01), \( d = -0.6 \); RAP: Mean Change -0.08, 95% CI -0.17, 0.01, \( d = -0.5 \)) in comparison to the control group. Heart rate targets were met, with a higher average heart rate evident for the RAP (AEP: 74.04% of max, 148.09 bpm; RAP: 77.58% of max, 155.15 bpm).

Power calculations were based on change in the primary outcome (cardiorespiratory fitness, assessed using the multi-stage shuttle test(24)). A between-group difference of 10 laps was considered achievable, assuming a standard deviation of 9 laps, 80% power with alpha levels set at 0.05, it was determined that 20 participants per group would provide adequate power to detect statistically significant effects.

After baseline measures had been assessed by research assistants blinded to treatment allocation, participants were randomized using a random number-producing algorithm. A stratified random sampling procedure was conducted to ensure that equal numbers of boys and girls were allocated between the three groups.

Participants randomized to the intervention conditions (AEP and RAP groups) participated in three HIIT sessions / week for eight weeks (24 sessions in total). Two HIIT sessions / week were delivered in scheduled PE lessons and a third session delivered at lunch-time. The focus of each of the three programs included:
i. AEP: Participants completed HIIT sessions primarily involving gross motor cardiorespiratory exercises (e.g., shuttle runs, jumping jacks, skipping);

ii. RAP: Participants completed HIIT sessions that included a combination of cardiorespiratory and body weight resistance training exercises (e.g., shuttle runs, jumping jacks, skipping, combined with body weight squats, push-ups). For example, one RAP work phase included the following sequence of cardiorespiratory and resistance exercises (4 walking lunges, 10m sprint and 3 push-ups) repeated as many times as possible in a 30 second period. The RAP treatment did not include a separate resistance training component with a pre-specified number of sets and repetitions;

iii. Control: Participants continued with their programmed PE and usual lunchtime activities over the 8-week intervention period (Figure 1).

The AEP and RAP groups engaged in their HIIT sessions (inclusive of a short warm-up activity including dynamic stretching, 8-10 minutes of HIIT and cool down), while the control group did their typical warm-up, stretching and completed one activity with their PE teacher. Following the HIIT session, the groups were combined to complete the remainder of the scheduled PE lesson. Session duration and intensity were the same for both intervention groups. Participants wore heart rate monitors (Polar H7) to encourage maintenance of the appropriate exercise intensity, which were connected to a central iPad application (Polar Team). Heart rates were displayed on a projector screen during sessions.

Given that both adolescent girls and boys have reported difficulty starting and adhering to regular exercise, several approaches (based on self-determination theory(39)) were undertaken to
promote adherence to the program. Firstly, sessions were designed to be enjoyable by including a fun warm-up and cool-down activity or game, and participants worked with a partner of their choice (one participant undertook the ‘work’ phase of the sessions, while their partner completed the ‘rest’ phase). To create a supportive environment, a focus of all sessions was to promote and reward students for providing verbal encouragement and support to peers and for working hard during the HIIT sessions. A ‘Trainer of the Day’ certificate was presented to one pair per session for providing positive feedback and motivation for their partner, and for demonstrating outstanding effort and dedication during the workout. Prizes (e.g., a gift voucher) were also awarded to the pairs in each study arm receiving the most certificates at the end of the program. To promote autonomy, participants were also given the opportunity to: (a) choose music (student playlists used weeks 2-8), (b) select specific exercises to be completed during a workout (weeks 4-6) and choose a workout (between two workouts previously completed; weeks 7 and 8) once exercises were mastered.

**Outcomes**

All assessments were conducted by trained researchers blinded to group allocation. A measurement training session and protocol manual including specific instructions for conducting all assessments was provided for all research staff to ensure accuracy and consistency. All physical assessments were conducted discretely and questionnaires were completed under exam-like conditions.
Mental health outcomes

Executive function: The Trail Making Test (TMT) is a measure of visual attention, speed, scanning, speed of processing and mental flexibility and has been validated in youth (43). The TMT involves a two part visual task in which participants are required to firstly (Trail A) draw a line from one point to the next as quickly as possible to connect numbers in ascending order (e.g., 1-2-3-4 etc.), and secondly (Trail B) draw a line from one point to the next as quickly as possible to connect both numbers and letters in an ascending and alternating order (e.g., 1-a-2-b-3-c-4-d etc.) (37). Lower scores indicate greater cognitive performance, and in the literature various methods have been used to obtain an overall measure of cognitive flexibility. For instance, in one method the time to complete Trail A is subtracted from the time to complete Trail B (B-A) (40), while another method includes time to complete Trail B divided by the time to complete Trail A (B/A) (40). As TMT B is a more complex test compared to TMT A, some studies have only considered the time taken to complete Trail B (30). Therefore each of these methods are calculated and reported.

Psychological well-being: The Flourishing Scale is a brief 8-item summary measure of the respondent’s self-perceived success in areas such as relationships, self-esteem, purpose, and optimism. Students responded on a 7-point scale (1=Strongly disagree, to 7=Strongly agree) to how much they agreed with each statement relating to indicators of social well-being (e.g., I lead a purposeful and meaningful life). The scale provides a single psychological wellbeing score. A composite score was created by summing the scores for each item (possible range 8 to 56). Higher scores indicate greater wellbeing. Cronbach's alpha was used as a measure of scale reliability for psychological well-being (baseline: $\alpha=0.77$ and post-test: $\alpha=0.92$).
Psychological distress: The Kessler Psychological Distress Scale (K10) involves 10 questions about a person's emotional state(2). The K10 questionnaire is intended to measure distress based on questions about anxiety and depressive symptoms that a person has experienced in the last 4-weeks. Each question is scored from 0 (None of the time) to 5 (All of the time). Scores for the 10 questions are then summed, producing a minimum score between 0 and 50. Low scores indicate low levels of psychological distress and high scores indicate high levels of psychological distress(2). Cronbach's alpha was used as a measure of scale reliability for the K10 (baseline: $\alpha=0.93$ and post-test: $\alpha=0.91$).

Physical self-concept: The global physical self-concept and perceived appearance subscales from the Physical Self-Description Questionnaire (PSDQ) (validated in adolescence(28)) were used. Participants were asked to respond on a 6-point scale (1 = ‘False’, to 6 =‘True’) how true each statement was for them (e.g., ‘I am attractive for my age’, ‘I feel good about who I am and what I can do physically’). Total scores were divided by number of items to provide a mean value for the subscales of global physical self-concept and perceived appearance. Cronbach's alpha was used as a measure of scale reliability for perceived appearance (baseline: $\alpha=0.94$ and post-test: $\alpha=0.94$) and global physical self-concept (baseline: $\alpha=0.88$ and post-test: $\alpha=0.95$).

Process evaluation

Feelings state: A 1-item Feelings State questionnaire was administered before and after each HIIT session for the duration of the intervention (total 24 sessions)(38). Participants were asked to respond on an 11-point scale (-5 = Very bad, to +5 = Very good) to the question: How
are you feeling right now? Mean pre- and post-workout scores were calculated for each session according to intervention condition.

**Heart rate data:** To monitor exercise intensity (target: efforts $\geq 85\%$ of heart rate maximum), participants were fitted with Polar H7 heart rate monitors, which were connected to a central iPad application (Polar Team). Mean heart rate for the entire session and mean maximum heart rate were tracked over the study period.

**Statistical analyses**

Statistical analyses of the primary and secondary outcomes were conducted with linear mixed models using IBM SPSS Statistics for Windows, Version 20.0 (2010 SPSS Inc., IBM Company Armonk, NY). Intervention effects for the primary and secondary outcomes were examined by using linear mixed models. Due to the small sample size and the potential issues associated with interpreting p-values(15), Cohen’s d was included to provide a measure of effect size (adjusted difference between HIIT and control groups over time divided by the pooled standard deviation of change), and 95% confidence intervals were also determined. Moderators of HIIT effects were explored using linear mixed models with interaction terms for the following: i) sex (boys versus girls), ii) weight status (healthy weight versus overweight/obese), and iii) baseline fitness level (i.e., healthy fitness zone versus needs improvement). Sub-group analyses were only conducted if significant interaction effects were observed ($p=0.10$).

In addition to Cohen’s d effect sizes (mean difference (post-test minus baseline) between groups divided by the pooled standard deviation of change for the whole group), and based on a
previous literature, the clinical inference of the true value of change scores was derived using a custom made spreadsheet developed by Hopkins(19). A clinical inference was based on the probabilities of harm and benefit for each outcome, and are presented as the chance that the true value of the change scores was beneficial, trivial or harmful(19). Our study used the default probabilities (%) and associated descriptors of 0 “most unlikely”, 0.5 “very unlikely”, 5 “unlikely”, 25 “possibly” 75 “likely”, 95 “very likely”, and 99.5 “most likely”(19).

RESULTS

The number of participants involved at each phase of the study is reported in Figure 1. One secondary school was successfully recruited and 65 adolescents from three classes (45 males, 20 females, mean age: 15.8(0.6) years) from grades 9 and 10 completed baseline testing (see Table 1). The intervention groups were similar for baseline characteristics.

Changes in executive function (TMT)

Small-to-moderate intervention effects for executive function were found for the RAP condition for all methods of calculation used (B/A: -0.56, 95% CI -1.47 to 0.35, d=-0.37, 95%CI -1.29 to 1.04; B-A: -7.76, 95% CI -21.79 to 6.27, d=-0.40, 95% CI -8.24 to 8.85); TMT B: -10.73, 95% CI -26.22 to 4.76, d=-0.50, 95% CI -8.92 to 9.73), which were all classified as “possibly beneficial”. For the AEP condition however, a small intervention effect for executive function was only evident when considering TMT B scores (-6.69, 95% CI -22.03 to 8.64, d=-0.32, 95%CI -9.12 to 9.77), which was also classified as “possibly beneficial”.

Copyright © 2016 by the American College of Sports Medicine. Unauthorized reproduction of this article is prohibited.
Changes in psychological wellbeing (Flourishing Scale)

Small intervention effects for wellbeing were found for both HIIT conditions (AEP: 2.81, 95% CI -2.06 to 7.68, \(d=0.34\), 95% CI -1.73 to 2.37; RAP: 2.96, 95% CI -1.82 to 7.75, \(d=0.35\), 95% CI -1.46 to 2.53), which was “possibly beneficial”.

Changes in psychological distress (K-10)

There were no intervention effects for psychological distress for either HIIT groups, in comparison to the control condition. A clinical inference of “very unlikely harmful” was apparent for both conditions.

Changes in physical self-concept

Changes for all outcomes are reported in Table 2. Analyses of efficacy (adjusted difference between group and Cohen’s \(d\) effect sizes reported) identified a small intervention effect for the RAP condition for perceived appearance (0.32, 95% CI -0.25 to 0.86, \(d=0.35\), 95% CI -0.74 to 0.41, clinical inference: “unclear”). However, no intervention effects were apparent for global physical self-concept in either HIIT group (clinical inference: AEP “most unlikely harmful”; RAP “unlikely harmful”).

Process outcomes

Changes in feelings state

Mean pre- and post-workout scores were calculated for each session according to intervention condition (see Figure 2 and 3). For the AEP group, mean feelings state scores increased from pre = 1.57(1.13) to post = 2.54(1.00), which was statistically significant
(p=0.001), representing an average improvement of 0.97(1.08). The improvement in mean feeling state scores among participants in RAP approached statistical significance (pre = 1.85(1.54) to post = 2.19(1.54); p=0.06); an improvement of 0.34(0.80)).

Heart Rate Data

Mean heart rate scores were calculated for each session according to intervention conditions. Higher average heart rates (AEP: 74.0%, 148.1 bpm; RAP: 77.6%, 155.2 bpm) were evident in the RAP group, in comparison to the AEP (note: session average heart rate included the warm-up, work periods, rest periods and cool down). In contrast, mean maximum heart rate was higher for the AEP group (AEP: 92.4%, 184.8 bpm; RAP: 91.8%, 182.2 bpm), in comparison to the RAP group.

Moderators

As there were no significant (p <.10) interaction effects for any of the potential moderators, subgroup analyses were not conducted.

DISCUSSION

The aim of the current study was to evaluate the impact of two HIIT protocols [Aerobic Exercise Program (AEP) and Resistance and Aerobic Exercise (RAP)] on a range of cognitive and mental health outcomes in a sample of adolescents. Overall, small improvements in executive function (TMT B) and psychological wellbeing were evident in the AEP group; and small improvements in executive function (B-A; B/A), wellbeing and perceived appearance were observed for the RAP group. However, when considering TMT B only, a moderate effect was
apparent for the RAP condition. Mean feelings state scores improved from pre-workout to post-workout in both HIIT groups, however significant results were observed only for the AEP.

Executive function comprises several cognitive processes, which contribute to organizing and controlling goal-directed behavior, and includes inhibition, working memory, and cognitive flexibility(31). Although the evidence is still emerging, regular participation in physical activity has been linked to enhanced brain function and cognition and improved academic performance in adolescents(17). Evidence also suggests that incorporating physical activity into the school day is associated with improvements in attention, concentration, and time on task in the classroom(36). In our study, small and moderate improvements in executive function (TMT B) were evident in the AEP and RAP groups, respectively. Similarly, a four-month cluster RCT of Spanish adolescents (n=67) examined the impact of 4 PE lessons (embedded with high intensity activities) per week vs. 4 regular lessons per week vs. 2 regular lessons per week (control; regular lesson duration = 55 mins) on cognitive performance and academic achievement(3). Overall, no differences in cognitive performance or academic achievement were evident between having 2 or 4 regular PE lessons/week; however, students randomized to 4 sessions per week embedded with high intensity activities achieved improvements in all cognitive performance variables (excluding verbal reasoning), and for average school grades. Our study builds on these findings, by using very short duration HIIT to improve cognitive function in adolescents. Further research involving larger sample sizes and long-term follow up is needed to investigate the impact that intensity of PE lessons can have on cognition and academics for adolescents. While session attendance plays a role for adolescent cognition and academics(18), the impact of intensity does not appear to have been examined.
Psychological wellbeing refers to an individual’s perception of their success in relationships, self-esteem, purpose and optimism(12). In our study, there was a small intervention effect for psychological wellbeing suggestive of a ‘possibly beneficial’ effect for both HIIT intervention protocols. Each HIIT session was designed to meet participants' basic psychological needs for autonomy (e.g., choice of music, exercise choices during a workout and choice of workout), competence (e.g., provision of challenging yet achievable workouts, sense of accomplishment) and relatedness (e.g., working in pairs, sessions focused on promoting encouragement and support to peers), which may have also impacted wellbeing. Similarly, in a recent 8-month RCT examining psychological wellbeing in adolescent boys (mean age 12.7±0.5) participating in the Active Teen Leaders Avoiding Screen-time study(27), the intervention resulted in a small yet statistically significant effect on wellbeing. Interestingly, the intervention effect on wellbeing was mediated by improvements in muscular fitness and the provision of autonomy within lessons, indicating that the inclusion of resistance training within the intervention facilitated improvements in wellbeing. While resistance training was included in the sessions programmed for the RAP group, there do not appear to be any substantial differences in wellbeing effects between groups in the current study. As the effect of HIIT on wellbeing appears promising, further research spanning beyond one school term with a focus on resistance training is needed to investigate the ongoing impact of this approach to exercise.

The HIIT intervention effect on psychological distress was marginal in the current study. Similarly, a meta-analysis of nine studies (1982-2010) examining the impact of physical activity on depression in youth(7), reported a small yet significant treatment effect. Of note, the greatest effects on depression were evident in RCTs, of <3 months which employed an educational
component in addition to physical activity(7). Conversely, a review of five studies investigating the effect of exercise for the prevention and treatment of anxiety and depression in youth (1983-2005) reported physical activity interventions had a statistically significant effect on reducing depression (standard mean difference effect size = -0.66; 95% CI -1.25, -0.08)(23). Given the inconsistent findings and limited number of current studies available, future research is needed to clarify the relationship between physical activity and psychological distress among adolescents, and to determine the optimal intensity and duration of physical activity intervention to achieve the greatest improvements in psychological distress. Moreover, sub-group analyses are required to determine if the effects of physical activity on depressive symptoms are stronger among individuals who are ‘at-risk’ or have depression. Due to the small sample size, this was not possible for the current study.

Physical self-concept refers to an individual’s beliefs about their physical characteristics and adolescence represents a significant period for the development of physical self-concept(29). Evidence suggests that in comparison to adolescents who engage in low levels or no physical activity, adolescents participating in higher levels of physical activity have greater self-concept(4). Adolescents’ perceptions of physical appearance are typically formed by comparing themselves with peers(29). In our study, the RAP condition achieved a small positive intervention effect for the perceived appearance subscale. Similarly in a previous 8-week study examining the effects of resistance training on physical self-perception in a sample of adolescents (n=108)(26), significant changes in perceived body attractiveness were evident among girls randomized to the free weights resistance training condition (p<0.01; d=0.76); however no significant changes were found for boys. A recent meta-analysis examining physical
activity and domains of physical self-concept in youth reported a weak association between perceived appearance and physical activity ($r=0.14$, 95% CI $0.09–0.18$, $p>0.001$)(4). Given that physical self-concept (including perceived competence and appearance) is an important component of global self-esteem, the small improvements in perceived appearance demonstrated in our study (RAP condition) may have important implications for improving mental health outcomes. However, longer term studies may be necessary (i.e., >8 weeks) to improve perceived appearance, particularly among boys; and further investigations are needed to determine if improvements in perceived appearance contribute to improvements in global self-esteem and serve as a protective factor against mental illness during adolescence.

**Process outcomes**

The high retention rate suggests that intervention strategies utilized in this program appealed to participants and resulted in their continued involvement in the program. While the maximum heart rate data suggest that our target heart rates were achieved (i.e., ≥85% maximum heart rate), this cannot be confirmed with the available data. It should be noted that heart rate monitors were worn for the entire HIIT session, which included a warm-up, rest periods and cool down. Therefore, it is not surprising that participants’ mean heart rates were below 85% maximum heart rate. Unfortunately, we did not specifically ask participants to reflect on the potential benefits of incorporating resistance exercise into the HIIT protocols. However, considering the benefits of muscular fitness for health among adolescents(42), there is clear advantage to including resistance exercise in future interventions targeting adolescents. Encouragingly, mean feelings state scores improved from pre- to post-workout, suggesting high intensity exercise is likely to result in improved affective responses for this population.
group(38). However, results were only statistically significant for the AEP group, which could be explained by the slightly lower average heart rate reached across AEP sessions in comparison to the RAP sessions. It may be that AEP sessions were somewhat less strenuous than the RAP sessions and perceived as more achievable and enjoyable for participants. While a recent commentary(6) has proposed that prescribing intense exercise to the general/sedentary population may lead to feelings of incompetence and failure resulting in reduced physical activity motivation and participation, this was not the case in our study. Interestingly, in a study conducted by Crisp and colleagues(11) the male participants did not consider sprint interval cycling to be more strenuous than moderate intensity continuous cycling; and in a study conducted by Jung and colleagues(21) examining the affective response to high intensity exercise compared to continuous moderate or vigorous intensity exercise conducted on cycle ergometers, participants reported greater enjoyment and a preference to participate in high intensity intervals in comparison to continuous moderate-intensity exercise and continuous vigorous-intensity exercise. This highlights the importance of the type of exercises included in HIIT sessions being appealing for participants in order to maintain/improve enjoyment and motivation for physical activity.

**Strengths and limitations**

This novel study has a number of strengths including the randomized design, assessor blinding, and high retention rates. However, some limitations should also be acknowledged. The small sample from one school and the uneven distribution of girls and boys participating in the study may limit generalizability of our findings. In addition, the intervention period was relatively short, with no long-term follow-up conducted. Finally, the heart rate monitoring
application did not allow for heart rate to be recorded during the work interval only (i.e., maximum heart rate and mean heart rate for the entire session were recorded). Finally, our heart rate monitoring protocol provided a summary of the entire session and did not isolate participants’ heart rates during the work interval only (i.e., maximum heart rate and mean heart rate for the entire session were recorded). In future studies, researchers are encouraged to utilize the lap function on the heart rate monitors to isolate HIIT work periods from rest periods and if possible record the length of time (number of minutes and percentage of session) that each participant met heart rate targets. This protocol will provide a better indication of HIIT session intensity.

CONCLUSION

The outcomes of this research contribute to understanding how short bouts of intense exercise influence cognitive and mental health outcomes in adolescent populations. While evidence from this study highlights the potential of embedding HIIT within the school day for improving executive function, physical self-concept (especially appearance) and wellbeing and among adolescents, no significant (p<0.05) findings emerged. Therefore, further longitudinal research with longer follow-up periods, investigating a larger sample of adolescents from a range of year levels and schools should be conducted.
ACKNOWLEDGEMENTS

This project was supported by a Hunter Medical Research Institute Project Grant. DRL is supported by an Australian Research Council Future Fellowship. RCP is supported by a National Health and Medical Research Council Senior Research Fellowship. The authors are grateful for the support and cooperation of the participating school and students. The authors would also like to thank Dan Beckett, Tara Finn, Emma Pollock and Sarah Kennedy for their assistance in the delivery of HIIT sessions and for data collection.

Conflicts of Interest: None to declare. The results of this study do not constitute endorsement by the American College of Sports Medicine.
Reference list


**Figure 1 Caption:**

Figure 1. Flow of participants through the study

AEP=Aerobic Exercise Program; RAP=Resistance and Aerobic Exercise Program; K10= Kessler Psychological Distress Scale; FL SCALE= Flourishing Scale; MOT= Physical Activity Motivation; PSC= Physical Self Concept; TMT= Trail Making Test

**Figure 2 Caption:**

Figure 2. Mean feelings state scores recorded pre and post-sessions for the aerobic exercise program (AEP) condition

**Figure 3 Caption:**

Figure 3. Mean feelings state scores recorded pre and post-sessions for the resistance and aerobic program (RAP) condition
Figure 1

Assessed for eligibility, schools invited to participate (n=3)

Schools declined and reasons (n=2)
  Involved in another PA program (n=2)

Schools consented (n=1)

Participants completed baseline assessments (n=65 students)

Participants Randomized

<table>
<thead>
<tr>
<th>Control group (n=22)</th>
<th>HITT intervention conditions</th>
</tr>
</thead>
<tbody>
<tr>
<td>Baseline</td>
<td>Baseline</td>
</tr>
<tr>
<td>22 participants completed assessments</td>
<td>22 participants completed assessments</td>
</tr>
</tbody>
</table>
| 22 participants completed assessments | 20 participants completed assessments; 1 absent
| 21 participants completed assessments; 1 absent | 20 participants completed assessments; 1 absent
| 22 participants completed assessments | 19 participants completed assessments; 2 absent |

Mental health outcomes
- Physical self-description
- Psychological distress
- Flourishing scale
- Executive function
- Physical activity motivation

Post-test
- 22 participants completed assessments
- 22 participants completed assessments
- 22 participants completed assessments
- 19 participants completed assessments; 3 absent
- 22 participants completed assessments

Mental health outcomes
- Physical self-description
- Psychological distress
- Flourishing scale
- Executive function
- Physical activity motivation

Post-test
- 20 participants completed assessments; 1 absent
- 19 participants completed assessments; 2 absent
- 20 participants completed assessments
- 19 participants completed assessments; 2 absent
- 18 participants completed assessments; 3 absent

A *Absent on during assessment session
Figure 2
Figure 3
Table 1: Participant baseline demographics *(Australia, July 2014)*

<table>
<thead>
<tr>
<th></th>
<th>Control Total (n=22)</th>
<th>AEP Total (n=21)</th>
<th>RAP Total (n=22)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Mean(sd)</td>
<td>Mean(sd)</td>
<td>Mean(sd)</td>
</tr>
<tr>
<td>Age (years)</td>
<td>15.6 (0.6)</td>
<td>15.7 (0.7)</td>
<td>15.5 (0.6)</td>
</tr>
<tr>
<td>Weight (kg)</td>
<td>66.0 (15.8)</td>
<td>64.7 (9.8)</td>
<td>67.0 (12.9)</td>
</tr>
<tr>
<td>Height (cm)</td>
<td>171.3 (10.6)</td>
<td>172.3 (8.6)</td>
<td>173.8 (7.1)</td>
</tr>
<tr>
<td>BMI (kg/m²)</td>
<td>22.29 (3.53)</td>
<td>21.72 (2.10)</td>
<td>22.08 (3.56)</td>
</tr>
<tr>
<td>BMI-z</td>
<td>0.51 (0.94)</td>
<td>0.43 (0.60)</td>
<td>0.45 (1.05)</td>
</tr>
</tbody>
</table>

SD = standard deviation; AEP=Aerobic Exercise Program; RAP=Resistance and Aerobic Exercise Program; BMI=Body Mass Index.
Table 2. Changes in cognitive and mental health outcomes post-intervention

<table>
<thead>
<tr>
<th>Variable</th>
<th>Control Group</th>
<th>AEP Group</th>
<th>RAP Group</th>
<th>AEP – Control</th>
<th>RAP – Control</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Baseline Mean (95% CI)</td>
<td>Post-Int Mean (95% CI)</td>
<td>Baseline Mean (95% CI)</td>
<td>Post-Int Mean (95% CI)</td>
<td>Mean change (95% CI)</td>
</tr>
<tr>
<td><strong>Executive Function</strong></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(Trails B – Trails A)</td>
<td>34.25 (25.07, 43.45)</td>
<td>34.95 (26.41, 43.49)</td>
<td>36.05 (28.28, 43.83)</td>
<td>32.80 (24.69, 40.91)</td>
<td>32.80 (24.55, 41.07)</td>
</tr>
<tr>
<td>(Trails B/Trails A)</td>
<td>1.46 (0.98, 1.94)</td>
<td>1.63 (1.09, 2.17)</td>
<td>1.99 (1.49, 2.48)</td>
<td>2.18 (1.62, 2.73)</td>
<td>2.40 (1.92, 2.88)</td>
</tr>
<tr>
<td>(TMT B)</td>
<td>57.87 (47.2, 68.54)</td>
<td>57.32 (47.43, 67.21)</td>
<td>63.21 (54.10, 72.33)</td>
<td>55.97 (46.80, 65.14)</td>
<td>65.07 (54.72, 73.91)</td>
</tr>
<tr>
<td><strong>Flourishing Scale</strong></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(psychological wellbeing)</td>
<td>48.27 (46.16, 50.38)</td>
<td>47.00 (44.22, 49.78)</td>
<td>46.38 (44.17, 48.59)</td>
<td>47.92 (44.92, 50.91)</td>
<td>46.59 (44.48, 48.70)</td>
</tr>
<tr>
<td><strong>Psychological Distress</strong></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>22.05 (18.87, 25.23)</td>
<td>22.10 (18.83, 25.36)</td>
<td>18.60 (15.27, 21.94)</td>
<td>18.17 (14.74, 21.59)</td>
<td>17.68 (14.50, 20.86)</td>
</tr>
</tbody>
</table>

\( ^{a} \) Clinical inference: Very unlikely harmful, possibly beneficial, unclear, very unlikely harmful.
| Mean Physical Self-description score (appearance) | 4.49 (3.92, 5.06) | 4.09 (3.49, 5.06) | 4.69 (4.19, 5.19) | 3.52 (2.95, 4.09) | 4.35 (3.88, 4.83) | 0.89 (-0.47, 0.65) | 0.10 (-0.48, 0.27) | Very unlikely harmful (-0.25, 0.249) | 0.35 (-0.74, 0.41) | Unclear |
| Mean Physical Self-description score (global physical) | 5.00 (4.52, 5.48) | 4.69 (4.19, 5.24) | 4.71 (4.19, 5.24) | 4.35 (3.88, 4.83) | 4.41 (3.91, 4.91) | -0.01 (-0.49, 0.46) | 0.00 (-0.32, 0.31) | Most unlikely harmful (-0.45, 0.935) | -0.03 (-0.28, 0.35) | Unlikely harmful |

^Adjusted difference between groups and 95% confidence interval between intervention and control groups after the 8-week intervention (AEP minus control; RAP minus control)

*p<0.05

a Likelihood of intervention being beneficial/ trivial/ harmful