Spatial prediction of rufous bristlebird habitat in a coastal heathland: a GIS-based approach

Gibson, Lesley, Wilson, Barbara, Cahill, David and Hill, John 2004, Spatial prediction of rufous bristlebird habitat in a coastal heathland: a GIS-based approach, Journal of applied ecology, vol. 41, no. 2, pp. 213-223.

Attached Files
Name Description MIMEType Size Downloads

Title Spatial prediction of rufous bristlebird habitat in a coastal heathland: a GIS-based approach
Author(s) Gibson, Lesley
Wilson, Barbara
Cahill, David
Hill, John
Journal name Journal of applied ecology
Volume number 41
Issue number 2
Start page 213
End page 223
Publisher Blackwell Scientific Publications
Place of publication Oxford, England
Publication date 2004-04
ISSN 0021-8901
1365-2664
Keyword(s) Akaike's information criterion
geographical information system
habitat model
hierarchical partitioning
information-theoretic approach
logistic regression
Summary 1. To develop a conservation management plan for a species, knowledge of its distribution and spatial arrangement of preferred habitat is essential. This is a difficult task, especially when the species of concern is in low   abundance. In south-western Victoria, Australia, populations of the rare rufous bristlebird Dasyornis broadbenti are threatened by fragmentation of suitable habitat. In order to improve the conservation status of this species, critical habitat requirements must be identified and a system of corridors must be established to link known populations. A predictive spatial model of rufous bristlebird habitat was developed in order to identify critical areas requiring preservation, such as corridors for dispersal.
2
. Habitat models generated using generalized linear modelling techniques can assist in delineating the specific habitat requirements of a species. Coupled with geographic information system (GIS) technology, these models can be extrapolated to produce maps displaying the spatial configuration of suitable habitat.
3
. Models were generated using logistic regression, with bristlebird presence or absence as the dependent variable and landscape variables, extracted from both GIS data layers and multispectral digital imagery, as the predictors. A multimodel inference approach based on Akaike’s information criterion was used and the resulting model was applied in a GIS to extrapolate predicted likelihood of occurrence across the entire area of concern. The predictive performance of the selected model was evaluated using the receiver operating characteristic (ROC) technique. A hierarchical partitioning protocol was used to identify the predictor variables most likely to influence variation in the dependent variable. Probability of species presence was used as an index of habitat suitability.
4
. Negative associations between rufous bristlebird presence and  increasing elevation, 'distance to cree', 'distance to coast' and sun index were evident, suggesting a preference for areas relatively low in altitude, in close proximity to the coastal fringe and drainage lines, and receiving less direct sunlight. A positive association with increasing habitat complexity also suggested that this species prefers areas containing high vertical density of vegetation.
5. The predictive performance of the selected model was shown to be high (area under the curve 0·97), indicating a good fit of the model to the data. Hierarchical partitioning analysis showed that all the variables considered had significant  independent contributions towards explaining the variation in the dependent variable. The proportion of the total study area that was predicted as suitable habitat for the rufous bristlebird (using probability of occurrence at a ≥0·5 level ) was 16%.
6
. Synthesis and applications. The spatial model clearly delineated areas predicted as highly suitable rufous bristlebird habitat, with evidence of potential corridors linking coastal and inland populations via gullies. Conservation of this species will depend on management actions that protect the critical habitats identified in the model. A multi-scale  approach to the modelling process is recommended whereby a spatially explicit model is first generated using landscape variables extracted from a GIS, and a second model at site level is developed using fine-scale habitat variables measured on the ground. Where there are constraints on the time and cost involved in measuring finer scale variables, the first step alone can be used for conservation planning.
Language eng
Field of Research 050202 Conservation and Biodiversity
HERDC Research category C1 Refereed article in a scholarly journal
Copyright notice ©2004, British Ecological Society
Persistent URL http://hdl.handle.net/10536/DRO/DU:30002473

Document type: Journal Article
Collection: School of Biological and Chemical Sciences
Connect to link resolver
 
Unless expressly stated otherwise, the copyright for items in DRO is owned by the author, with all rights reserved.

Versions
Version Filter Type
Citation counts: TR Web of Science Citation Count  Cited 124 times in TR Web of Science
Scopus Citation Count Cited 132 times in Scopus
Google Scholar Search Google Scholar
Access Statistics: 518 Abstract Views, 0 File Downloads  -  Detailed Statistics
Created: Mon, 07 Jul 2008, 08:25:42 EST

Every reasonable effort has been made to ensure that permission has been obtained for items included in DRO. If you believe that your rights have been infringed by this repository, please contact drosupport@deakin.edu.au.