Active temperature compensation for an accelerometer based angle measuring device
Mackley, J. and Nahavandi, Saeid 2004, Active temperature compensation for an accelerometer based angle measuring device, in Robotics : trends, principles, and applications : proceedings of the Sixth Biannual World Automation Congress (WAC), ISORA, Seville, Spain, TSI Press, Albuquerque, N.M., pp. 1-6.
An angle measuring device using a high performance and very compact accelerometer provides a new and exciting method for producing highly compact and accurate angle measuring devices. Accelerometers are micro-machined and are able to measure acceleration to a very high accuracy. By using gravity as a reference these compact devices can also be used for measuring angles of rotation. The inherent problem with these devices is that their response characteristic changes with temperature which is detrimental to measurement accuracy. This paper describes an effective method to overcome this problem using a temperature sensor and intelligent software to compensate for this drift characteristic. In order to demonstrate the effectiveness of this work, experiments have been developed and conducted with the results and analysis provided at the end of this paper for discussion.
Notes
Every reasonable effort has been made to ensure that permission has been obtained for items included in Deakin Research Online. If you believe that your rights have been infringed by this repository, please contact drosupport@deakin.edu.au
ISBN
1889335215 9781889335216
Language
eng
Field of Research
091099 Manufacturing Engineering not elsewhere classified
Unless expressly stated otherwise, the copyright for items in DRO is owned by the author, with all rights reserved.
Every reasonable effort has been made to ensure that permission has been obtained for items included in DRO.
If you believe that your rights have been infringed by this repository, please contact drosupport@deakin.edu.au.
Every reasonable effort has been made to ensure that permission has been obtained for items included in DRO. If you believe that your rights have been infringed by this repository, please contact drosupport@deakin.edu.au.