High-precision five-axis machine for high-speed material processing using linear motors and parallel-serial kinematics
Refaat, Sameh, Herve, Jacques M., Nahavandi, Saeid and Trinh, Hieu 2006, High-precision five-axis machine for high-speed material processing using linear motors and parallel-serial kinematics, in ETFA '06, IEEE Conference on Emerging Technologies and Factory Automation, 2006, IEEE Xplore, Piscataway, N.J., pp. 501-506.
The paper describes some details of the mechanical and kinematics design of a five-axis mechanism. The design has been utilized to physically realize an industrial-scale five-axis milling machine that can carry a three KW spindle. However, the mechanism could be utilized in other material processing and factory automation applications. The mechanism has five rectilinear joints/axes. Two of these axes are arranged traditionally, i.e. in series, and the other three axes utilize the concept of parallel kinematics. This combination results in a design that allows three translational and two rotational two-mode degrees of freedom (DOFs). The design provides speed, accuracy and cost advantages over traditional five-axis machines. All axes are actuated using linear motors.
Notes
This material is presented to ensure timely dissemination of scholarly and technical work. Copyright and all rights therein are retained by authors or by other copyright holders. All persons copying this information are expected to adhere to the terms and constraints invoked by each author's copyright. In most cases, these works may not be reposted without the explicit permission of the copyright holder.
Unless expressly stated otherwise, the copyright for items in DRO is owned by the author, with all rights reserved.
Every reasonable effort has been made to ensure that permission has been obtained for items included in DRO.
If you believe that your rights have been infringed by this repository, please contact drosupport@deakin.edu.au.
Every reasonable effort has been made to ensure that permission has been obtained for items included in DRO. If you believe that your rights have been infringed by this repository, please contact drosupport@deakin.edu.au.