Results of permittivity measurements, electromagnetic interference shielding effectiveness, and heat generation due to microwave absorption in conducting polymer coated textiles are reported and discussed. The intrinsically conducting polymer, polypyrrole, doped with anthraquinone-2-sulfonic acid (AQSA) or para-toluene-2-sulfonic acid (pTSA) was applied on textile substrates and the resulting materials were investigated in the frequency range 1–18 GHz. The 0.54 mm thick conducting textile/polypyrrole composites absorbed up to 49.5% of the incident 30–35 W microwave radiation. A thermography station was used to monitor the temperature of these composites during the irradiation process, where absorption was confirmed via visible heat losses. Samples with lower conductivity showed larger temperature increases caused by microwave absorption compared to samples with higher conductivity. A sample with an average sheet resistivity of 150 Ω/sq. showed a maximum temperature increase of 5.27 °C, whilst a sample with a lower resistivity (105 Ω/sq.) rose by 3.85 °C.
Unless expressly stated otherwise, the copyright for items in DRO is owned by the author, with all rights reserved.
Every reasonable effort has been made to ensure that permission has been obtained for items included in DRO.
If you believe that your rights have been infringed by this repository, please contact drosupport@deakin.edu.au.
Every reasonable effort has been made to ensure that permission has been obtained for items included in DRO. If you believe that your rights have been infringed by this repository, please contact drosupport@deakin.edu.au.