Quantitative evaluation in health promotion : evaluation with confidence

Jolley, Damien 2001, Quantitative evaluation in health promotion : evaluation with confidence, Health promotion journal of Australia, vol. 11, no. 1, pp. 84-89.

Attached Files
Name Description MIMEType Size Downloads

Title Quantitative evaluation in health promotion : evaluation with confidence
Author(s) Jolley, Damien
Journal name Health promotion journal of Australia
Volume number 11
Issue number 1
Start page 84
End page 89
Publisher Australian Health Promotion Association
Place of publication Perth, W.A.
Publication date 2001
ISSN 1036-1073
1753-6405
Summary Over the past 10 years or so, confidence intervals have become increasingly recognised in program evaluation and quantitative health measurement generally as the preferred way of reporting the accuracy of statistical estimates. Statisticians have found that the more traditional ways of reporting results - using P-values and hypothesis tests - are often very difficult to interpret and can be misleading. This is particularly the case when sample sizes are small and results are 'negative' (ie P>0.05); in these cases, a confidence interval can communicate much more information about the sample and, by inference, about the population. Despite this trend among statisticians and health promotion evaluators towards the use of confidence intervals, it is surprisingly difficult to find succinct and reasonably simple methods to actually compute a confidence interval. This is particularly the case for proportions or percentages. Much of the data which are analysed in health promotion are binary or categorical, rather than the quantities and continuous variables often found in laboratories or other branches of science, so there is a need for health promotion evaluators to be able to present confidence intervals for percentages or proportions. However, the most popular statistical analysis computer package among health promotion professionals, SPSS does not have a routine to compute a simple confidence interval for a proportion! To address this shortcoming, I present in this paper some fairly simple strategies for computing confidence intervals for population percentages, both manually and using the right computer software.
Language eng
Field of Research 111712 Health Promotion
HERDC Research category C1.1 Refereed article in a scholarly journal
Copyright notice ©2008, RMIT Publishing
Persistent URL http://hdl.handle.net/10536/DRO/DU:30012472

Document type: Journal Article
Collection: School of Health Sciences
Connect to link resolver
 
Unless expressly stated otherwise, the copyright for items in DRO is owned by the author, with all rights reserved.

Versions
Version Filter Type
Access Statistics: 369 Abstract Views, 0 File Downloads  -  Detailed Statistics
Created: Tue, 21 Oct 2008, 11:25:02 EST

Every reasonable effort has been made to ensure that permission has been obtained for items included in DRO. If you believe that your rights have been infringed by this repository, please contact drosupport@deakin.edu.au.