Optimal multisensor data fusion for linear systems with missing measurements
Mohamed, Shady M. and Nahavandi, Saeid 2008, Optimal multisensor data fusion for linear systems with missing measurements, in SOSE 2008 : IEEE International Conference on System of Systems Engineering, IEEE, Piscataway, N.J., pp. 1-4.
International Conference on System of Systems Engineering
Start page
1
End page
4
Total pages
4
Publisher
IEEE
Place of publication
Piscataway, N.J.
Summary
Multisensor data fusion has attracted a lot of research in recent years. It has been widely used in many applications especially military applications for target tracking and identification. In this paper, we will handle the multisensor data fusion problem for systems suffering from the possibility of missing measurements. We present the optimal recursive fusion filter for measurements obtained from two sensors subject to random intermittent measurements. The noise covariance in the observation process is allowed to be singular which requires the use of generalized inverse. Illustration example shows the effectiveness of the proposed filter in the measurements loss case compared to the available optimal linear fusion methods.
Notes
This material is presented to ensure timely dissemination of scholarly and technical work. Copyright and all rights therein are retained by authors or by other copyright holders. All persons copying this information are expected to adhere to the terms and constraints invoked by each author's copyright. In most cases, these works may not be reposted without the explicit permission of the copyright holder.
Unless expressly stated otherwise, the copyright for items in DRO is owned by the author, with all rights reserved.
Every reasonable effort has been made to ensure that permission has been obtained for items included in DRO.
If you believe that your rights have been infringed by this repository, please contact drosupport@deakin.edu.au.
Every reasonable effort has been made to ensure that permission has been obtained for items included in DRO. If you believe that your rights have been infringed by this repository, please contact drosupport@deakin.edu.au.