Discriminating DDoS flows from flash crowds using information distance
Yu, Shui, Thapngam, Theerasak, Liu, Jianwen, Wei, Su and Zhou, Wanlei 2009, Discriminating DDoS flows from flash crowds using information distance, in NSS 2009 : Proceedings of the third International Conference on Network and System Security, IEEE, Piscataway, N. J., pp. 351-356.
Discriminating DDoS flooding attacks from flash crowds poses a tough challenge for the network security community. Because of the vulnerability of the original design of the Internet, attackers can easily mimic the patterns of legitimate network traffic to fly under the radar. The existing fingerprint or feature based algorithms are incapable to detect new attack strategies. In this paper, we aim to differentiate DDoS attack flows from flash crowds. We are motivated by the following fact: the attack flows are generated by the same prebuilt program (attack tools), however, flash crowds come from randomly distributed users all over the Internet. Therefore, the flow similarity among DDoS attack flows is much stronger than that among flash crowds. We employ abstract distance metrics, the Jeffrey distance, the Sibson distance, and the Hellinger distance to measure the similarity among flows to achieve our goal. We compared the three metrics and found that the Sibson distance is the most suitable one for our purpose. We apply our algorithm to the real datasets and the results indicate that the proposed algorithm can differentiate them with an accuracy around 65%.
Notes
This material is presented to ensure timely dissemination of scholarly and technical work. Copyright and all rights therein are retained by authors or by other copyright holders. All persons copying this information are expected to adhere to the terms and constraints invoked by each author's copyright. In most cases, these works may not be reposted without the explicit permission of the copyright holder.
ISBN
9780769538389
Language
eng
Field of Research
080503 Networking and Communications
Socio Economic Objective
970108 Expanding Knowledge in the Information and Computing Sciences
Unless expressly stated otherwise, the copyright for items in DRO is owned by the author, with all rights reserved.
Every reasonable effort has been made to ensure that permission has been obtained for items included in DRO.
If you believe that your rights have been infringed by this repository, please contact drosupport@deakin.edu.au.
Every reasonable effort has been made to ensure that permission has been obtained for items included in DRO. If you believe that your rights have been infringed by this repository, please contact drosupport@deakin.edu.au.