Assembly of 3-D network structures containing oxydiacetate and CeIII or CeIV
Behrsing, Thomas, Deacon, Glen B., Forsyth, Craig M., Forsyth, Maria, Skelton, Brian W. and White, Allan H. 2003, Assembly of 3-D network structures containing oxydiacetate and CeIII or CeIV, Zeitschrift für anorganische und allgemeine chemie, vol. 629, no. 1, pp. 35-44, doi: 10.1002/zaac.200390014.
Attached Files
Name
Description
MIMEType
Size
Downloads
Title
Assembly of 3-D network structures containing oxydiacetate and CeIII or CeIV
Formatted title
Assembly of 3-D network structures containing oxydiacetate and CeIII or CeIV
Reaction of CeCl3·7H2O with Na2(oda) (oda = O(CH2CO2)22— oxydiacetate) in a 2:3 ratio gives the neutral cerium(III) complex [Ce2(oda)3(H2O)3]·9H2O (1). Treatment of a 1:3 mixture of CeCl3·7H2O and H2oda in water with 4 molar equivalents of NaOH also gives 1 but, with a larger excess of NaOH, the tri-sodium salt Na3[Ce(oda)3]·9H2O (2) is isolated. Formation of a tri-ammonium analogue of 2 can be achieved by neutralisation of an aqueous solution of CeCl3·7H2O and H2(oda) in a 1:3 ratio by NH4OH, giving (NH4)3[Ce(oda)3]·7H2O (3). Use of the cerium(IV) reagent (NH4)2[Ce(NO3)6] with Na2(oda) results in reduction to cerium(III) under ambient conditions and isolation of 1. However, in the absence of light this reaction yields crystals of the novel cerium(IV) heterobimetallic [Ce(oda)3Na4(NO3)2] (4). Each of these complexes exhibit a 3-D network structure having a common nine-coordinate [Ce(oda)3]n— (n = 2 or 3) subunit, irrespective of the oxidation state of cerium. In 1, six [Ce(oda)3]3— anions are connected, through bridging bidentate carboxylates, to a second Ce3+ site further coordinated by three water molecules. In contrast, the ammonium salt 2, displays isolated [Ce(oda)3]3— anions, devoid of further carboxylate bonding, but enmeshed within a network of hydrogen-bonded NH4+ cations and water molecules. The remarkable structure of 4 consists of infinite 2-D sheets of [Na2(NO3)]+ pillared by [Ce(oda)3]2— units, the connectivity arising by multidentate nitrate and carboxylate bridging.
Every reasonable effort has been made to ensure that permission has been obtained for items included in DRO. If you believe that your rights have been infringed by this repository, please contact drosupport@deakin.edu.au.