Construction of optimal prediction intervals for load forecasting problems
Khosravi, Abbas, Nahavandi, Saeid and Creighton, Doug 2010, Construction of optimal prediction intervals for load forecasting problems, IEEE transactions on power systems, vol. 25, no. 3, pp. 1496-1503, doi: 10.1109/TPWRS.2010.2042309.
Short-term load forecasting is fundamental for the reliable and efficient operation of power systems. Despite its importance, accurate prediction of loads is problematic and far remote. Often uncertainties significantly degrade performance of load forecasting models. Besides, there is no index available indicating reliability of predicted values. The objective of this study is to construct prediction intervals for future loads instead of forecasting their exact values. The delta technique is applied for constructing prediction intervals for outcomes of neural network models. Some statistical measures are developed for quantitative and comprehensive evaluation of prediction intervals. According to these measures, a new cost function is designed for shortening length of prediction intervals without compromising their coverage probability. Simulated annealing is used for minimization of this cost function and adjustment of neural network parameters. Demonstrated results clearly show that the proposed methods for constructing prediction interval outperforms the traditional delta technique. Besides, it yields prediction intervals that are practically more reliable and useful than exact point predictions.
Notes
Date of Publication: 11 March 2010. This material is presented to ensure timely dissemination of scholarly and technical work. Copyright and all rights therein are retained by authors or by other copyright holders. All persons copying this information are expected to adhere to the terms and constraints invoked by each author's copyright. In most cases, these works may not be reposted without the explicit permission of the copyright holder.
Unless expressly stated otherwise, the copyright for items in DRO is owned by the author, with all rights reserved.
Every reasonable effort has been made to ensure that permission has been obtained for items included in DRO.
If you believe that your rights have been infringed by this repository, please contact drosupport@deakin.edu.au.
Every reasonable effort has been made to ensure that permission has been obtained for items included in DRO. If you believe that your rights have been infringed by this repository, please contact drosupport@deakin.edu.au.