Integrated health monitoring for reinforced concrete beams: an experimental study
Wang, Ying and Hao, Hong 2011, Integrated health monitoring for reinforced concrete beams: an experimental study, Australian journal of mechanical engineering, vol. 8, no. 2, pp. 207-217.
Attached Files
Name
Description
MIMEType
Size
Downloads
Title
Integrated health monitoring for reinforced concrete beams: an experimental study
Civil infrastructures begin to deteriorate once they are built and used. Detecting the damages in a structure to maintain its safety is a topic that has received considerable attention in the literature in recent years. In vibration-based methods, the first few modes are used to assess the locations and the amount of damage. However, a small number of the global modes are not sufficient to reliably detect minor damage in the structure. Also, a common limitation of these techniques is that they require a high-fidelity model of the structure to start with, which is usually not available. Recently, guided waves (GW) have been found as an effective and efficient way to detect incipient damages due to its capacity of relatively long propagation range as well as its flexibility in selecting sensitive mode-frequency combinations. In this paper, an integrated structural health monitoring test scheme is developed to detect damages in reinforced concrete (RC) beams. Each beam is loaded at the middle span progressively to damage. During each loading step, acoustic emission (AE) method is used as a passive monitoring method to catch the AE signals caused by the crack opening and propagation. After each loading step, vibration tests and guided wave tests are conducted as a combined active monitoring measure. The modal parameters and wave propagation results are used to derive the damage information. Experimental results show that the integrated method is efficient to detect incipient damages in RC structures.
Every reasonable effort has been made to ensure that permission has been obtained for items included in DRO. If you believe that your rights have been infringed by this repository, please contact drosupport@deakin.edu.au.