Pareto archived simulated annealing for single machine job shop scheduling with multiple objectives
Hanoun, Samer, Nahavandi, Saeid and Kull, Hans 2011, Pareto archived simulated annealing for single machine job shop scheduling with multiple objectives, in ICCGI 2011 : Sixth International Multi-Conference on Computing in the Global Information Technology, [IARIA], [Luxembourg City, Luxembourg], pp. 99-104.
In this paper, the single machine job shop scheduling problem is studied with the objectives of minimizing the tardiness and the material cost of jobs. The simultaneous consideration of these objectives is the multi-criteria optimization problem under study. A metaheuristic procedure based on simulated annealing is proposed to find the approximate Pareto optimal (non-dominated) solutions. The two objectives are combined in one composite utility function based on the decision maker’s interest in having a schedule with weighted combination. In view of the unknown nature of the weights for the defined objectives, a priori approach is applied to search for the non-dominated set of solutions based on the Pareto dominance. The obtained solutions set is presented to the decision maker to choose the best solution according to his preferences. The performance of the algorithm is evaluated in terms of the number of non-dominated schedules generated and the proximity of the obtained non-dominated front to the true Pareto front. Results show that the produced solutions do not differ significantly from the optimal solutions.
Unless expressly stated otherwise, the copyright for items in DRO is owned by the author, with all rights reserved.
Every reasonable effort has been made to ensure that permission has been obtained for items included in DRO.
If you believe that your rights have been infringed by this repository, please contact drosupport@deakin.edu.au.
Every reasonable effort has been made to ensure that permission has been obtained for items included in DRO. If you believe that your rights have been infringed by this repository, please contact drosupport@deakin.edu.au.