Semantic trajectory based event detection and event pattern mining
Wang, Xiaofeng, Li, Gang, Jiang, Guang and Shi, Zhongzhi 2011, Semantic trajectory based event detection and event pattern mining, Knowledge and information systems, vol. 37, pp. 305-329, doi: 10.1007/s10115-011-0471-8.
Attached Files
Name
Description
MIMEType
Size
Downloads
Title
Semantic trajectory based event detection and event pattern mining
Video event detection is an effective way to automatically understand the semantic content of the video. However, due to the mismatch between low-level visual features and high-level semantics, the research of video event detection encounters a number of challenges, such as how to extract the suitable information from video, how to represent the event, how to build up reasoning mechanism to infer the event according to video information. In this paper, we propose a novel event detection method. The method detects the video event based on the semantic trajectory, which is a high-level semantic description of the moving object’s trajectory in the video. The proposed method consists of three phases to transform low-level visual features to middle-level raw trajectory information and then to high-level semantic trajectory information. Event reasoning is then carried out with the assistance of semantic trajectory information and background knowledge. Additionally, to release the users’ burden in manual event definition, a method is further proposed to automatically discover the event-related semantic trajectory pattern from the sample semantic trajectories. Furthermore, in order to effectively use the discovered semantic trajectory patterns, the associative classification-based event detection framework is adopted to discover the possibly occurred event. Empirical studies show our methods can effectively and efficiently detect video events.
Language
eng
DOI
10.1007/s10115-011-0471-8
Field of Research
089999 Information and Computing Sciences not elsewhere classified
Socio Economic Objective
970108 Expanding Knowledge in the Information and Computing Sciences
Every reasonable effort has been made to ensure that permission has been obtained for items included in DRO. If you believe that your rights have been infringed by this repository, please contact drosupport@deakin.edu.au.