We present a method for foreground/background separation of audio using a background modelling technique. The technique models the background in an online, unsupervised, and adaptive fashion, and is designed for application to long term surveillance and monitoring problems. The background is determined using a statistical method to model the states of the audio over time. In addition, three methods are used to increase the accuracy of background modelling in complex audio environments. Such environments can cause the failure of the statistical model to accurately capture the background states. An entropy-based approach is used to unify background representations fragmented over multiple states of the statistical model. The approach successfully unifies such background states, resulting in a more robust background model. We adaptively adjust the number of states considered background according to background complexity, resulting in the more accurate classification of background models. Finally, we use an auxiliary model cache to retain potential background states in the system. This prevents the deletion of such states due to a rapid influx of observed states that can occur for highly dynamic sections of the audio signal. The separation algorithm was successfully applied to a number of audio environments representing monitoring applications.
Language
eng
Field of Research
080109 Pattern Recognition and Data Mining
Socio Economic Objective
890205 Information Processing Services (incl. Data Entry and Capture)
Every reasonable effort has been made to ensure that permission has been obtained for items included in DRO. If you believe that your rights have been infringed by this repository, please contact drosupport@deakin.edu.au.