Comparative evaluation of pedestrian detection methods for mobile bus surveillance
Leoputra, Wilson S., Venkatesh, Svetha and Tan, Tele 2009, Comparative evaluation of pedestrian detection methods for mobile bus surveillance, in ICASSP 2009 : Proceedings of the IEEE International Conference on Acoustics, Speech and Signal Processing, IEEE, Piscataway, N. J., pp. 3525-3528.
We present a comparative evaluation of the state-of-art algorithms for detecting pedestrians in low frame rate and low resolution footage acquired by mobile sensors. Four approaches are compared: a) The Histogram of Oriented Gradient (HoG) approach [1]; b) A new histogram feature that is formed by the weighted sum of both the gradient magnitude and the filter responses from a set of elongated Gaussian filters [2] corresponding to the quantised orientation, called Histogram of Oriented Gradient Banks (HoGB) approach; c) The codebook based HoG feature with branch-and-bound (efficient subwindow search) algorithm [3] and; d) The codebook based HoGB approach. Results show that the HoG based detector achieves the highest performance in terms of the true positive detection, the HoGB approach has the lowest false positives whilst maintaining a comparable true positive rate to the HoG, and the codebook approaches allow computationally efficient detection.
Notes
This material is presented to ensure timely dissemination of scholarly and technical work. Copyright and all rights therein are retained by authors or by other copyright holders. All persons copying this information are expected to adhere to the terms and constraints invoked by each author's copyright. In most cases, these works may not be reposted without the explicit permission of the copyright holder.
ISBN
1424423538 9781424423538
ISSN
1520-6149
Language
eng
Field of Research
089999 Information and Computing Sciences not elsewhere classified
Socio Economic Objective
970108 Expanding Knowledge in the Information and Computing Sciences
Unless expressly stated otherwise, the copyright for items in DRO is owned by the author, with all rights reserved.
Every reasonable effort has been made to ensure that permission has been obtained for items included in DRO.
If you believe that your rights have been infringed by this repository, please contact drosupport@deakin.edu.au.
Every reasonable effort has been made to ensure that permission has been obtained for items included in DRO. If you believe that your rights have been infringed by this repository, please contact drosupport@deakin.edu.au.