Model-based character recognition in low resolution
Kuhl, Annika, Tan, Tele and Venkatesh, Svetha 2008, Model-based character recognition in low resolution, in ICIP 2008 : Proceedings of the International Conference on Image Processing, IEEE, Piscataway, N. J., pp. 1001-1004.
We propose a combined character separation and recognition approach for low-resolution images of alphanumeric text. By synthesising the image formation process a set of low-resolution templates is created for each character. Cluster algorithms and normalised cross-correlation are then applied to match these templates and thereby allowing both character separation and recognition to be achieved at the same time. Thus characters are recognised using their low-resolution appearance only without applying image enhancement methods. Experiments showed that this approach is able to recognise low-resolution alphanumeric text of down to 5 pixels in size.
Notes
This material is presented to ensure timely dissemination of scholarly and technical work. Copyright and all rights therein are retained by authors or by other copyright holders. All persons copying this information are expected to adhere to the terms and constraints invoked by each author's copyright. In most cases, these works may not be reposted without the explicit permission of the copyright holder.
ISBN
1424417651 9781424417650
ISSN
1522-4880
Language
eng
Field of Research
089999 Information and Computing Sciences not elsewhere classified
Socio Economic Objective
970108 Expanding Knowledge in the Information and Computing Sciences
Unless expressly stated otherwise, the copyright for items in DRO is owned by the author, with all rights reserved.
Every reasonable effort has been made to ensure that permission has been obtained for items included in DRO.
If you believe that your rights have been infringed by this repository, please contact drosupport@deakin.edu.au.
Every reasonable effort has been made to ensure that permission has been obtained for items included in DRO. If you believe that your rights have been infringed by this repository, please contact drosupport@deakin.edu.au.