The hidden permutation model and location-based activity recognition
Bui, Hung H., Phung, Dinh, Venkatesh, Svetha and Phan, Hai 2008, The hidden permutation model and location-based activity recognition, in AAAI 2008 : Proceedings of the 23rd AAAI Conference on Artificial Intelligence, AAAI, [Chicago, Ill.], pp. 1345-1350.
Attached Files
Name
Description
MIMEType
Size
Downloads
Title
The hidden permutation model and location-based activity recognition
Permutation modeling is challenging because of the combinatorial nature of the problem. However, such modeling is often required in many real-world applications, including activity recognition where subactivities are often permuted and partially ordered. This paper introduces a novel Hidden Permutation Model (HPM) that can learn the partial ordering constraints in permuted state sequences. The HPM is parameterized as an exponential family distribution and is flexible so that it can encode constraints via different feature functions. A chain-flipping Metropolis-Hastings Markov chain Monte Carlo (MCMC) is employed for inference to overcome the O(n!) complexity. Gradient-based maximum likelihood parameter learning is presented for two cases when the permutation is known and when it is hidden. The HPM is evaluated using both simulated and real data from a location-based activity recognition domain. Experimental results indicate that the HPM performs far better than other baseline models, including the naive Bayes classifier, the HMM classifier, and Kirshner's multinomial permutation model. Our presented HPM is generic and can potentially be utilized in any problem where the modeling of permuted states from noisy data is needed.
ISBN
9781577353683
Language
eng
Field of Research
089999 Information and Computing Sciences not elsewhere classified
Socio Economic Objective
970108 Expanding Knowledge in the Information and Computing Sciences
Every reasonable effort has been made to ensure that permission has been obtained for items included in DRO. If you believe that your rights have been infringed by this repository, please contact drosupport@deakin.edu.au.