Leoputra, Wilson S., Venkatesh, Svetha and Tan, Tele 2008, Pedestrian detection for mobile bus surveillance, in ICARCV 2008 : Proceedings of the 10th International Conference on Control, Automation, Robotics and Vision, IEEE, [Washington, D. C.], pp. 726-732.
In this paper, we present a system for pedestrian detection involving scenes captured by mobile bus surveillance cameras in busy city streets. Our approach integrates scene localization, foreground and background separation, and pedestrian detection modules into a unified detection framework. The scene localization module performs a two stage clustering of the video data. In the first stage, SIFT Homography is applied to cluster frames in terms of their structural similarities and second stage further clusters these aligned frames in terms of lighting. This produces clusters of images which are differential in viewpoint and lighting. A kernel density estimation (KDE) method for colour and gradient foreground-background separation are then used to construct background model for each image cluster which is subsequently used to detect all foreground pixels. Finally, using a hierarchical template matching approach, pedestrians can be identified. We have tested our system on a set of real bus video datasets and the experimental results verify that our system works well in practice.
Notes
This material is presented to ensure timely dissemination of scholarly and technical work. Copyright and all rights therein are retained by authors or by other copyright holders. All persons copying this information are expected to adhere to the terms and constraints invoked by each author's copyright. In most cases, these works may not be reposted without the explicit permission of the copyright holder.
ISBN
1424422868 9781424422869
Language
eng
Field of Research
089999 Information and Computing Sciences not elsewhere classified
Socio Economic Objective
970108 Expanding Knowledge in the Information and Computing Sciences
Unless expressly stated otherwise, the copyright for items in DRO is owned by the author, with all rights reserved.
Every reasonable effort has been made to ensure that permission has been obtained for items included in DRO.
If you believe that your rights have been infringed by this repository, please contact drosupport@deakin.edu.au.
Every reasonable effort has been made to ensure that permission has been obtained for items included in DRO. If you believe that your rights have been infringed by this repository, please contact drosupport@deakin.edu.au.