AdaBoost.MRF: boosted Markov random forests and application to multilevel activity recognition
Tran, Truyen, Phung, Dinh Q., Bui, Hung H. and Venkatesh, Svetha 2006, AdaBoost.MRF: boosted Markov random forests and application to multilevel activity recognition, in CVPR 2006 : Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition, IEEE, Piscataway, N.J., pp. 1686-1693, doi: 10.1109/CVPR.2006.49.
Activity recognition is an important issue in building intelligent monitoring systems. We address the recognition of multilevel activities in this paper via a conditional Markov random field (MRF), known as the dynamic conditional random field (DCRF). Parameter estimation in general MRFs using maximum likelihood is known to be computationally challenging (except for extreme cases), and thus we propose an efficient boosting-based algorithm AdaBoost.MRF for this task. Distinct from most existing work, our algorithm can handle hidden variables (missing labels) and is particularly attractive for smarthouse domains where reliable labels are often sparsely observed. Furthermore, our method works exclusively on trees and thus is guaranteed to converge. We apply the AdaBoost.MRF algorithm to a home video surveillance application and demonstrate its efficacy.
Notes
This material is presented to ensure timely dissemination of scholarly and technical work. Copyright and all rights therein are retained by authors or by other copyright holders. All persons copying this information are expected to adhere to the terms and constraints invoked by each author's copyright. In most cases, these works may not be reposted without the explicit permission of the copyright holder.
Unless expressly stated otherwise, the copyright for items in DRO is owned by the author, with all rights reserved.
Every reasonable effort has been made to ensure that permission has been obtained for items included in DRO.
If you believe that your rights have been infringed by this repository, please contact drosupport@deakin.edu.au.
Every reasonable effort has been made to ensure that permission has been obtained for items included in DRO. If you believe that your rights have been infringed by this repository, please contact drosupport@deakin.edu.au.