Online context recognition in multisensor systems using Dynamic Time Warping
Ko, Ming Hsiao, West, Geoff, Venkatesh, Svetha and Kumar, Mohan 2005, Online context recognition in multisensor systems using Dynamic Time Warping, in Proceedings of the 2005 intelligent sensors, sensor networks and information processing conference, IEEE, Piscataway, N.J., pp. 283-288, doi: 10.1109/ISSNIP.2005.1595593.
In this paper, we present our system for online context recognition of multimodal sequences acquired from multiple sensors. The system uses Dynamic Time Warping (DTW) to recognize multimodal sequences of different lengths, embedded in continuous data streams. We evaluate the performance of our system on two real world datasets: 1) accelerometer data acquired from performing two hand gestures and 2) NOKIA's benchmark dataset for context recognition. The results from both datasets demonstrate that the system can perform online context recognition efficiently and achieve high recognition accuracy.
Notes
This material is presented to ensure timely dissemination of scholarly and technical work. Copyright and all rights therein are retained by authors or by other copyright holders. All persons copying this information are expected to adhere to the terms and constraints invoked by each author's copyright. In most cases, these works may not be reposted without the explicit permission of the copyright holder.
Unless expressly stated otherwise, the copyright for items in DRO is owned by the author, with all rights reserved.
Every reasonable effort has been made to ensure that permission has been obtained for items included in DRO.
If you believe that your rights have been infringed by this repository, please contact drosupport@deakin.edu.au.
Every reasonable effort has been made to ensure that permission has been obtained for items included in DRO. If you believe that your rights have been infringed by this repository, please contact drosupport@deakin.edu.au.