Bui, Hung H., Venkatesh, Svetha and West, Geoff 2000, On the recognition of abstract Markov policies, in AAAI-2000 : Proceedings of the 17th National Conference on Artificial Intelligence, AAAI Press, Cambridge, Mass., pp. 524-530.
Abstraction plays an essential role in the way the agents plan their behaviours, especially to reduce the computational complexity of planning in large domains. However, the effects of abstraction in the inverse process – plan recognition – are unclear. In this paper, we present a method for recognising the agent’s behaviour in noisy and uncertain domains, and across multiple levels of abstraction. We use the concept of abstract Markov policies in abstract probabilistic planning as the model of the agent’s behaviours and employ probabilistic inference in Dynamic Bayesian Networks (DBN) to infer the correct policy from a sequence of observations. When the states are fully observable, we show that for a broad and often-used class of abstract policies, the complexity of policy recognition scales well with the number of abstraction levels in the policy hierarchy. For the partially observable case, we derive an efficient hybrid inference scheme on the corresponding DBN to overcome the exponential complexity.
ISBN
9780262511124 0262511126
Language
eng
Field of Research
089999 Information and Computing Sciences not elsewhere classified
Socio Economic Objective
970108 Expanding Knowledge in the Information and Computing Sciences
Every reasonable effort has been made to ensure that permission has been obtained for items included in DRO. If you believe that your rights have been infringed by this repository, please contact drosupport@deakin.edu.au.