An empirical comparison of classification algorithms for diagnosis of depression from brain sMRI scans
Kipli, Kuryati, Kouzani, Abbas Z. and Xiang, Yong 2013, An empirical comparison of classification algorithms for diagnosis of depression from brain sMRI scans, in ACSAT 2013 : Proceedings of the 2nd International Conference on Advanced Computer Science Applications and Technologies. 2013, IEEE Computer Society, [Sarawak, Malaysia], pp. 333-336, doi: 10.1109/ACSAT.2013.72.
To be diagnostically effective, structural magnetic resonance imaging (sMRI) must reliably distinguish a depressed individual from a healthy individual at individual scans level. One of the tasks in the automated diagnosis of depression from brain sMRI is the classification. It determines the class to which a sample belongs (i.e., depressed/not depressed, remitted/not-remitted depression) based on the values of its features. Thus far, very limited works have been reported for identification of a suitable classification algorithm for depression detection. In this paper, different types of classification algorithms are compared for effective diagnosis of depression. Ten independent classification schemas are applied and a comparative study is carried out. The algorithms are: Naïve Bayes, Support Vector Machines (SVM) with Radial Basis Function (RBF), SVM Sigmoid, J48, Random Forest, Random Tree, Voting Feature Intervals (VFI), LogitBoost, Simple KMeans Classification Via Clustering (KMeans) and Classification Via Clustering Expectation Minimization (EM) respectively. The performances of the algorithms are determined through a set of experiments on sMRI brain scans. An experimental procedure is developed to measure the performance of the tested algorithms. A classification accuracy evaluation method was employed for evaluation and comparison of the performance of the examined classifiers.
Language
eng
DOI
10.1109/ACSAT.2013.72
Field of Research
090399 Biomedical Engineering not elsewhere classified 080109 Pattern Recognition and Data Mining
Unless expressly stated otherwise, the copyright for items in DRO is owned by the author, with all rights reserved.
Every reasonable effort has been made to ensure that permission has been obtained for items included in DRO.
If you believe that your rights have been infringed by this repository, please contact drosupport@deakin.edu.au.
Every reasonable effort has been made to ensure that permission has been obtained for items included in DRO. If you believe that your rights have been infringed by this repository, please contact drosupport@deakin.edu.au.