Remote monitoring system enabling cloud technology upon smart phones and inertial sensors for human kinematics
Karunarathne,MS, Jones,SA, Ekanayake,SW and Pathirana,PN 2014, Remote monitoring system enabling cloud technology upon smart phones and inertial sensors for human kinematics, in Proceedings - 4th IEEE International Conference on Big Data and Cloud Computing, BDCloud 2014 with the 7th IEEE International Conference on Social Computing and Networking, SocialCom 2014 and the 4th International Conference on Sustainable Computing and Communications, SustainCom 2014, Institute of Electrical and Electronics Engineers Inc.,, pp. 137-142, doi: 10.1109/BDCloud.2014.62.
Attached Files
Name
Description
MIMEType
Size
Downloads
Title
Remote monitoring system enabling cloud technology upon smart phones and inertial sensors for human kinematics
Proceedings - 4th IEEE International Conference on Big Data and Cloud Computing, BDCloud 2014 with the 7th IEEE International Conference on Social Computing and Networking, SocialCom 2014 and the 4th International Conference on Sustainable Computing and Communications, SustainCom 2014
Publication date
2014
Start page
137
End page
142
Publisher
Institute of Electrical and Electronics Engineers Inc.
Stroke is a common neurological condition which is becoming increasingly common as the population ages. This entails healthcare monitoring systems suitable for home use, with remote access for medical professionals and emergency responders. The mobile phone is becoming the easy access tool for self-evaluation of health, but it is hindered by inherent problems including computational power and storage capacity. This research proposes a novel cloud based architecture of a biomedical system for a wearable motion kinematic analysis system which mitigates the above mentioned deficiencies of mobile devices. The system contains three subsystems: 1. Bio Kin WMS for measuring the acceleration and rotation of movement 2. Bio Kin Mobi for Mobile phone based data gathering and visualization 3. Bio Kin Cloud for data intensive computations and storage. The system is implemented as a web system and an android based mobile application. The web system communicates with the mobile application using an encrypted data structure containing sensor data and identifiable headings. The raw data, according to identifiable headings, is stored in the Amazon Relational Database Service which is automatically backed up daily. The system was deployed and tested in Amazon Web Services.
Every reasonable effort has been made to ensure that permission has been obtained for items included in DRO. If you believe that your rights have been infringed by this repository, please contact drosupport@deakin.edu.au.