This paper addresses the task of time-separated aerial image registration. The ability to solve this problem accurately and reliably is important for a variety of subsequent image understanding applications. The principal challenge lies in the extent and nature of transient appearance variation that a land area can undergo, such as that caused by the change under illumination conditions, seasonal variations, or the occlusion by non-persistent objects (people, cars). Our work introduces several major novelties (i) unlike previous work on aerial image registration, we approach the problem using a set-based paradigm; (ii) we show how image space local, pair-wise constraints can be used to enforce a globally good registration using a constraints graph structure; (iii) we show how a simple holistic representation derived from raw aerial images can be used as a basic building block of the constraints graph in a manner which achieves both high registration accuracy and speed; (iv) lastly, we introduce a new and, to the best of our knowledge, the only data corpus suitable for the evaluation of set-based aerial image registration algorithms. Using this data set, we demonstrate (i) that the proposed method outperforms the state-of-the-art for pair-wise registration already, achieving greater accuracy and reliability, while at the same time reducing the computational cost of the task and (ii) that the increase in the number of available images in a set consistently reduces the average registration error, with a major difference already for a single additional image.
080109 Pattern Recognition and Data Mining 0899 Other Information And Computing Sciences 0906 Electrical And Electronic Engineering 0801 Artificial Intelligence And Image Processing
Socio Economic Objective
970108 Expanding Knowledge in the Information and Computing Sciences
Every reasonable effort has been made to ensure that permission has been obtained for items included in DRO. If you believe that your rights have been infringed by this repository, please contact drosupport@deakin.edu.au.