You are not logged in.

LNA aptamer based multi-modal, Fe3O4-saturated lactoferrin (Fe3O4-bLf) nanocarriers for triple positive (EpCAM, CD133, CD44) colon tumor targeting and NIR, MRI and CT imaging

Roy, Kislay, Kanwar, Rupinder K. and Kanwar, Jagat R. 2015, LNA aptamer based multi-modal, Fe3O4-saturated lactoferrin (Fe3O4-bLf) nanocarriers for triple positive (EpCAM, CD133, CD44) colon tumor targeting and NIR, MRI and CT imaging, Biomaterials, vol. 71, pp. 84-99, doi: 10.1016/j.biomaterials.2015.07.055.

Attached Files
Name Description MIMEType Size Downloads

Title LNA aptamer based multi-modal, Fe3O4-saturated lactoferrin (Fe3O4-bLf) nanocarriers for triple positive (EpCAM, CD133, CD44) colon tumor targeting and NIR, MRI and CT imaging
Author(s) Roy, Kislay
Kanwar, Rupinder K.
Kanwar, Jagat R.
Journal name Biomaterials
Volume number 71
Start page 84
End page 99
Total pages 16
Publisher Elsevier
Place of publication Amsterdam, The Netherlands
Publication date 2015-08-04
ISSN 1878-5905
Keyword(s) Bovine lactoferrin
Colon cancer stem cells
Fe(3)O(4)
Locked nucleic acid (LNA)
Nanotheranostic
Survivin
Fe3O4
Summary This is the first ever attempt to combine anti-cancer therapeutic effects of emerging anticancer biodrug bovine lactoferrin (bLf), and multimodal imaging efficacy of Fe3O4 nanoparticles (NPs) together, as a saturated Fe3O4-bLf. For cancer stem cell specific uptake of nanocapsules/nanocarriers (NCs), Fe3O4-bLf was encapsulated in alginate enclosed chitosan coated calcium phosphate (AEC-CP) NCs targeted (Tar) with locked nucleic acid (LNA) modified aptamers against epithelial cell adhesion molecule (EpCAM) and nucleolin markers. The nanoformulation was fed orally to mice injected with triple positive (EpCAM, CD133, CD44) sorted colon cancer stem cells in the xenograft cancer stem cell mice model. The complete regression of tumor was observed in 70% of mice fed on non-targeted (NT) NCs, with 30% mice showing tumor recurrence after 30 days, while only 10% mice fed with Tar NCs showed tumor recurrence indicating a significantly higher survival rate. From tumor tissue analyses of 35 apoptotic markers, 55 angiogenesis markers, 40 cytokines, 15 stem cell markers and gene expression studies of important signaling molecules, it was revealed that the anti-cancer mechanism of Fe3O4-bLf was intervened through TRAIL, Fas, Fas-associated protein with death domain (FADD) mediated phosphorylation of p53, to induce activation of second mitochondria-derived activator of caspases (SMAC)/DIABLO (inhibiting survivin) and mitochondrial depolarization leading to release of cytochrome C. Induction of apoptosis was observed by inhibition of the Akt pathway and activation of cytokines released from monocytes/macrophages and dendritic cells (interleukin (IL) 27, keratinocyte chemoattractant (KC)). On the other hand, the recurrence of tumor in AEC-CP-Fe3O4-bLf NCs fed mice mainly occurred due to activation of alternative pathways such as mitogen-activated protein kinases (MAPK)/extracellular signal-regulated kinases (ERK) and Wnt signaling leading to an increase in expression of survivin, survivin splice variant (survivin 2B) and other anti-apoptotic proteins Bad, Bcl-2 and XIAP. Apart from the promising anti-cancer efficacy and the exceptional tumor targeting ability observed by multimodal imaging using near-infrared (NIR) imaging, magnetic resonance imaging (MRI) and computerized tomographic (CT) techniques, these NCs also maintained the immunomodulatory benefits of bLf as they were able to increase the RBC, hemoglobin, iron calcium and zinc levels in mice.
Language eng
DOI 10.1016/j.biomaterials.2015.07.055
Field of Research 119999 Medical and Health Sciences not elsewhere classified
Socio Economic Objective 920199 Clinical Health (Organs, Diseases and Abnormal Conditions) not elsewhere classified
HERDC Research category C1 Refereed article in a scholarly journal
Copyright notice ©2015, Elsevier
Persistent URL http://hdl.handle.net/10536/DRO/DU:30078106

Document type: Journal Article
Collections: School of Medicine
Institute for Frontier Materials
Connect to link resolver
 
Unless expressly stated otherwise, the copyright for items in DRO is owned by the author, with all rights reserved.

Versions
Version Filter Type
Citation counts: TR Web of Science Citation Count  Cited 15 times in TR Web of Science
Scopus Citation Count Cited 14 times in Scopus
Google Scholar Search Google Scholar
Access Statistics: 110 Abstract Views, 2 File Downloads  -  Detailed Statistics
Created: Tue, 20 Oct 2015, 11:16:42 EST

Every reasonable effort has been made to ensure that permission has been obtained for items included in DRO. If you believe that your rights have been infringed by this repository, please contact drosupport@deakin.edu.au.