Multi-task transfer learning for in hospital-death prediction for ICU patients
Karmakar, Chandan, Saha, Budhaditya, Palaniswami, Marimuthu and Venkatesh, Svetha 2016, Multi-task transfer learning for in hospital-death prediction for ICU patients, in EMBC 2016: Proceedings of the 38th Annual International Conference of the IEEE Engineering in Medicine and Biology Society, IEEE, Piscataway, N.J., pp. 3321-3324, doi: 10.1109/EMBC.2016.7591438.
Annual International Conference of the Engineering in Medicine and Biology Society
Start page
3321
End page
3324
Total pages
4
Publisher
IEEE
Place of publication
Piscataway, N.J.
Summary
Multi-Task Transfer Learning (MTTL) is an efficient approach for learning from inter-related tasks with small sample size and imbalanced class distribution. Since the intensive care unit (ICU) data set (publicly available in Physionet) has subjects from four different ICU types, we hypothesizethat there is an underlying relatedness amongst various ICU types. Therefore, this study aims to explore MTTL model for in-hospital mortality prediction of ICU patients. We used singletask learning (STL) approach on the augmented data as well as individual ICU data and compared the performance with the proposed MTTL model. As a performance measurement metrics, we used sensitivity (Sens), positive predictivity (+Pred), and Score. MTTL with class balancing showed the best performance with score of 0.78, 0.73, o.52 and 0.63 for ICU type 1(Coronary care unit), 2 (Cardiac surgery unit), 3 (Medical ICU) and 4 (Surgical ICU) respectively. In contrast the maximum score obtained using STL approach was 0.40 for ICU type 1 & 2. These results indicates that the performance of in-hospital mortality can be improved using ICU type information and by balancing the ’non-survivor’ class. The findings of the study may be useful for quantifying the quality of ICU care, managing ICU resources and selecting appropriate interventions.
Unless expressly stated otherwise, the copyright for items in DRO is owned by the author, with all rights reserved.
Every reasonable effort has been made to ensure that permission has been obtained for items included in DRO.
If you believe that your rights have been infringed by this repository, please contact drosupport@deakin.edu.au.
Every reasonable effort has been made to ensure that permission has been obtained for items included in DRO. If you believe that your rights have been infringed by this repository, please contact drosupport@deakin.edu.au.