Skeletal muscle satellite cells, mitochondria, and microRNAs: their involvement in the pathogenesis of ALS
Tsitkanou, Stavroula, Della Gatta, Paul A and Russell, Aaron P 2016, Skeletal muscle satellite cells, mitochondria, and microRNAs: their involvement in the pathogenesis of ALS, Frontiers in psychology, vol. 7, Article number: 403, pp. 1-9, doi: 10.3389/fphys.2016.00403.
Amyotrophic lateral sclerosis (ALS), also known as motor neuron disease (MND), is a fatal motor neuron disorder. It results in progressive degeneration and death of upper and lower motor neurons, protein aggregation, severe muscle atrophy and respiratory insufficiency. Median survival with ALS is between 2 and 5 years from the onset of symptoms. ALS manifests as either familial ALS (FALS) (~10% of cases) or sporadic ALS (SALS), (~90% of cases). Mutations in the copper/zinc (CuZn) superoxide dismutase (SOD1) gene account for ~20% of FALS cases and the mutant SOD1 mouse model has been used extensively to help understand the ALS pathology. As the precise mechanisms causing ALS are not well understood there is presently no cure. Recent evidence suggests that motor neuron degradation may involve a cell non-autonomous phenomenon involving numerous cell types within various tissues. Skeletal muscle is now considered as an important tissue involved in the pathogenesis of ALS by activating a retrograde signaling cascade that degrades motor neurons. Skeletal muscle heath and function are regulated by numerous factors including satellite cells, mitochondria and microRNAs. Studies demonstrate that in ALS these factors show various levels of dysregulation within the skeletal muscle. This review provides an overview of their dysregulation in various ALS models as well as how they may contribute individually and/or synergistically to the ALS pathogenesis.
Unless expressly stated otherwise, the copyright for items in DRO is owned by the author, with all rights reserved.
Every reasonable effort has been made to ensure that permission has been obtained for items included in DRO.
If you believe that your rights have been infringed by this repository, please contact drosupport@deakin.edu.au.
Every reasonable effort has been made to ensure that permission has been obtained for items included in DRO. If you believe that your rights have been infringed by this repository, please contact drosupport@deakin.edu.au.