Effect of soil texture and wheat plants on N₂O fluxes: a lysimeter study

Jamali, Hizbullah, Quayle, Wendy, Scheer, Clemens, Rowlings, David and Baldock, Jeff 2016, Effect of soil texture and wheat plants on N₂O fluxes: a lysimeter study, Agricultural and forest meteorology, vol. 223, pp. 17-29, doi: 10.1016/j.agrformet.2016.03.022.

Attached Files
Name Description MIMEType Size Downloads

Title Effect of soil texture and wheat plants on N₂O fluxes: a lysimeter study
Author(s) Jamali, Hizbullah
Quayle, WendyORCID iD for Quayle, Wendy orcid.org/0000-0003-0622-1915
Scheer, Clemens
Rowlings, David
Baldock, Jeff
Journal name Agricultural and forest meteorology
Volume number 223
Start page 17
End page 29
Total pages 13
Publisher Elsevier
Place of publication Amsterdam, The Netherlands
Publication date 2016-06-15
ISSN 0168-1923
Keyword(s) nitrous oxide
soil texture
Science & Technology
Life Sciences & Biomedicine
Physical Sciences
Meteorology & Atmospheric Sciences
Summary Agricultural soils are a major source of nitrous oxide (N2O) emissions and an understanding of factors regulating such emissions across contrasting soil types is critical for improved estimation through modelling and mitigation of N2O. In this study we investigated the role of soil texture and its interaction with plants in regulating the N2O fluxes in agricultural systems. A measurement system that combined weighing lysimeters with automated chambers was used to directly compare continuously measured surface N2O fluxes, leaching losses of water and nitrogen and evapotranspiration in three contrasting soils types of the Riverine Plain, NSW, Australia. The soils comprised a deep sand, a loam and a clay loam with and without the presence of wheat plants. All soils were under the same fertilizer management and irrigation was applied according to plant water requirements. In fallow soils, texture significantly affected N2O emissions in the order clay loam > loam > sand. However, when planted, the difference in N2O emissions among the three soils types became less pronounced. Nitrous oxide emissions were 6.2 and 2.4 times higher from fallow clay loam and loam cores, respectively, compared with cores planted with wheat. This is considered to be due to plant uptake of water and nitrogen which resulted in reduced amounts of soil water and available nitrogen, and therefore less favourable soil conditions for denitrification. The effect of plants on N2O emissions was not apparent in the coarse textured sandy soil probably because of aerobic soil conditions, likely caused by low water holding capacity and rapid drainage irrespective of plant presence resulting in reduced denitrification activity. More than 90% of N2O emissions were derived from denitrification in the fine-textured clay loam-determined for a two week period using K15NO3 fertilizer. The proportion of N2O that was not derived from K15NO3 was higher in the coarse-textured sand and loam, which may have been derived from soil N through nitrification or denitrification of mineralized N. Water filled pore space was a poorer predictor of N2O emissions compared with volumetric water content because of variable bulk density among soil types. The data may better inform the calibration of greenhouse gas prediction models as soil texture is one of the primary factors that explain spatial variation in N2O emissions by regulating soil oxygen. Defining the significance of N2O emissions between planted and fallow soils may enable improved yield scaled N2O emission assessment, water and nitrogen scheduling in the pre-watering phase during early crop establishment and within rotations of irrigated arable cropping systems.
Language eng
DOI 10.1016/j.agrformet.2016.03.022
Field of Research 070302 Agronomy
070108 Sustainable Agricultural Development
Socio Economic Objective 970105 Expanding Knowledge in the Environmental Sciences
HERDC Research category C1 Refereed article in a scholarly journal
ERA Research output type C Journal article
Copyright notice ©2016, Elsevier
Persistent URL http://hdl.handle.net/10536/DRO/DU:30089678

Connect to link resolver
Unless expressly stated otherwise, the copyright for items in DRO is owned by the author, with all rights reserved.

Version Filter Type
Citation counts: TR Web of Science Citation Count  Cited 8 times in TR Web of Science
Scopus Citation Count Cited 8 times in Scopus
Google Scholar Search Google Scholar
Access Statistics: 255 Abstract Views, 2 File Downloads  -  Detailed Statistics
Created: Fri, 02 Dec 2016, 17:20:35 EST

Every reasonable effort has been made to ensure that permission has been obtained for items included in DRO. If you believe that your rights have been infringed by this repository, please contact drosupport@deakin.edu.au.