Hyperactivation of oncogenic JAK3 mutants depend on ATP binding to the pseudokinase domain

Raivola, Juuli, Hammarén, Henrik M., Virtanen, Anniina T., Bulleeraz, Vilasha, Ward, Alister and Silvennoinen, Olli 2018, Hyperactivation of oncogenic JAK3 mutants depend on ATP binding to the pseudokinase domain, Frontiers in oncology, vol. 8, doi: 10.3389/fonc.2018.00560.

Attached Files
Name Description MIMEType Size Downloads

Title Hyperactivation of oncogenic JAK3 mutants depend on ATP binding to the pseudokinase domain
Author(s) Raivola, Juuli
Hammarén, Henrik M.
Virtanen, Anniina T.
Bulleeraz, Vilasha
Ward, AlisterORCID iD for Ward, Alister orcid.org/0000-0001-7945-7975
Silvennoinen, Olli
Journal name Frontiers in oncology
Volume number 8
Article ID 560
Total pages 14
Publisher Frontiers Media
Place of publication Lausanne, Switzerland
Publication date 2018-12
ISSN 2234-943X
Keyword(s) JAK kinase
cytokine
leukemia
nucleotide binding
pseudokinase
Science & Technology
Life Sciences & Biomedicine
Oncology
ACUTE LYMPHOBLASTIC-LEUKEMIA
TYROSINE KINASE
PROTEIN-KINASE
ACTIVATING MUTATIONS
CRYSTAL-STRUCTURES
JANUS KINASES
INHIBITORS
TYK2
SPECIFICITY
COMPLEX
Summary Janus kinase 3 (JAK3) tyrosine kinase has a central role in the control of lymphopoiesis, and mutations in JAK3 can lead to either severe combined immunodeficiency or leukemia and lymphomas. JAK3 associates with the common gamma chain (γc) receptor and functions in a heteromeric signaling pair with JAK1. In IL-2 signaling JAK1 is the effector kinase for STAT5 phosphorylation but the precise molecular regulatory mechanisms of JAK1 and JAK3 and their individual domains are not known. The pseudokinase domain (JAK homology 2, JH2) of JAK3 is of particular interest as approximately half of clinical JAK3 mutations cluster into it. In this study, we investigated the role of JH2s of JAK1 and JAK3 in IL-2R signaling and show that STAT5 activation requires both JH1 and JH2 of JAK1, while both JH1 and JH2 in JAK3 are specifically required for the cytokine-induction of cellular signaling. Characterization of recombinant JAK3 JH2 in thermal shift assay shows an unstable protein domain, which is strongly stabilized by ATP binding. Unexpectedly, nucleotide binding to JAK3 JH2 was found to be cation-independent. JAK3 JH2 showed higher nucleotide binding affinity in MANT-ATP and fluorescent polarization competition assays compared to the other JAK JH2s. Analysis of the functional role of ATP binding in JAK3 JH2 in cells and in zebrafish showed that disruption of ATP binding suppresses ligand-independent activation of clinical JAK3 gain-of-function mutations residing in either JH2 or JH1 but does not inhibit constitutive activation of oncogenic JAK1. ATP-binding site mutations in JAK3 JH2 do not, however, abrogate normal IL-2 signaling making them distinct from JH2 deletion or kinase-deficient JAK3. These findings underline the importance of JAK3 JH2 for cellular signaling in both ligand-dependent and in gain-of-function mutation-induced activation. Furthermore, they identify the JH2 ATP-binding site as a key regulatory region for oncogenic JAK3 signaling, and thus a potential target for therapeutic modulation.
Language eng
DOI 10.3389/fonc.2018.00560
HERDC Research category C1 Refereed article in a scholarly journal
Copyright notice ©2018, Raivola, Hammarén, Virtanen, Bulleeraz, Ward and Silvennoinen
Persistent URL http://hdl.handle.net/10536/DRO/DU:30120636

Document type: Journal Article
Collections: Faculty of Health
School of Medicine
Open Access Checking
Connect to link resolver
 
Unless expressly stated otherwise, the copyright for items in DRO is owned by the author, with all rights reserved.

Versions
Version Filter Type
Citation counts: TR Web of Science Citation Count  Cited 0 times in TR Web of Science
Scopus Citation Count Cited 0 times in Scopus
Google Scholar Search Google Scholar
Access Statistics: 73 Abstract Views, 0 File Downloads  -  Detailed Statistics
Created: Thu, 11 Apr 2019, 15:06:32 EST

Every reasonable effort has been made to ensure that permission has been obtained for items included in DRO. If you believe that your rights have been infringed by this repository, please contact drosupport@deakin.edu.au.