Investigation on the Electrochemical Performances of Mn<inf>2</inf>O<inf>3</inf> as a Potential Anode for Na-Ion Batteries
Yusoff, Nor Fazila Mahamad, Idris, Nurul Hayati, Din, Muhamad Faiz Md., Majid, Siti Rohana, Harun, NoorAniza and Rahman, Md. Mokhlesur 2020, Investigation on the Electrochemical Performances of Mn2O3 as a Potential Anode for Na-Ion Batteries, Scientific Reports, vol. 10, pp. 1-10, doi: 10.1038/s41598-020-66148-w.
Currently, the development of the sodium-ion (Na-ion) batteries as an alternative to lithium-ion batteries has been accelerated to meet the energy demands of large-scale power applications. The difficulty of obtaining suitable electrode materials capable of storing large amount of Na-ion arises from the large radius of Na-ion that restricts its reversible capacity. Herein, Mn2O3 powders are synthesised through the thermal conversion of MnCO3 and reported for the first time as an anode for Na-ion batteries. The phase, morphology and charge/discharge characteristics of Mn2O3 obtained are evaluated systematically. The cubic-like Mn2O3 with particle sizes approximately 1.0–1.5 µm coupled with the formation of Mn2O3 sub-units on its surface create a positive effect on the insertion/deinsertion of Na-ion. Mn2O3 delivers a first discharge capacity of 544 mAh g−1 and retains its capacity by 85% after 200 cycles at 100 mA g−1, demonstrating the excellent cyclability of the Mn2O3 electrode. Therefore, this study provides a significant contribution towards exploring the potential of Mn2O3 as a promising anode in the development of Na-ion batteries.
Unless expressly stated otherwise, the copyright for items in DRO is owned by the author, with all rights reserved.
Every reasonable effort has been made to ensure that permission has been obtained for items included in DRO.
If you believe that your rights have been infringed by this repository, please contact drosupport@deakin.edu.au.
Every reasonable effort has been made to ensure that permission has been obtained for items included in DRO. If you believe that your rights have been infringed by this repository, please contact drosupport@deakin.edu.au.