Stochastic disturbances often cause undesirable characteristics in real-world system modeling. As a result, investigations on stochastic disturbances in neural network (NN) modeling are important. In this study, stochastic disturbances are considered for the formulation of a new class of NN models; i.e., the discrete-time stochastic quaternion-valued neural networks (DSQVNNs). In addition, the mean-square asymptotic stability issue in DSQVNNs is studied. Firstly, we decompose the original DSQVNN model into four real-valued models using the real-imaginary separation method, in order to avoid difficulties caused by non-commutative quaternion multiplication. Secondly, some new sufficient conditions for the mean-square asymptotic stability criterion with respect to the considered DSQVNN model are obtained via the linear matrix inequality (LMI) approach, based on the Lyapunov functional and stochastic analysis. Finally, examples are presented to ascertain the usefulness of the obtained theoretical results.
Unless expressly stated otherwise, the copyright for items in DRO is owned by the author, with all rights reserved.
Every reasonable effort has been made to ensure that permission has been obtained for items included in DRO.
If you believe that your rights have been infringed by this repository, please contact drosupport@deakin.edu.au.
Every reasonable effort has been made to ensure that permission has been obtained for items included in DRO. If you believe that your rights have been infringed by this repository, please contact drosupport@deakin.edu.au.